Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Table of Contents

1.	Characterisation of ligands S1-S4	2-3
2.	Characterisation of metal complexes S5- S24	.4-12
3.	Characterisation of C-S cross coupling compounds S54	13-34
4.	Table S1: Solid structural parameters of 1-4	.35
5.	Table S2: Solid structural parameters of 5	.36
6.	Fig. S55. The solid state structure of 3	.37
7.	DFT Calculation	38

Fig. S 2. ¹³C NMR spectrum of L¹ in CDCl₃

-51.907

Fig. S 4. Neat FT-IR spectrum of L^1 .

Fig. S 6. ¹³C NMR spectrum of complex 1 in DMSO- d_6

Fig. S 8. Neat FT-IR spectrum of complex

Fig. S 9. ¹H NMR spectrum of complex 2 in DMSO- d_6

Fig. S10. ¹³C NMR spectrum of complex 2 in DMSO- d_6

Fig. S12. Neat FT-IR spectrum of complex 2

Fig. S14. ¹³ C NMR spectrum of complex **3** in CD₃CN

Fig. S16. ¹H NMR spectrum of complex 4 in CD₃CN

Fig. S18. Neat FT-IR spectrum of complex 4

Wavenumber cm-1

Fig. S19. ¹H NMR spectrum of complex **5** in CD₃CN

Fig. S20. 13 C NMR spectrum of complex 5 in CD₃CN

Fig. S21. Neat FT-IR spectrum of complex 5

1. Compound characterisation data (1a):

2-((4-nitrophenyl)thio)-1,3-benzothiazole: Chemical Formula: $C_{13}H_8N_2O_2S_2$; Colourless solid; Yield: 139 mg (80 %); **M. P**: 85 °C. ¹**H NMR (400 MHz, CDCl₃):** $\delta = 8.07-8.11$ (m, 2H), 7.41-7.49(m, 4H), 7.19 (m, 2H). ¹³**C NMR (CDCl₃, 100 MHz):** 162.78(ArC), 153.41(ArC), 147.88(ArC), 140.09(ArC), 136.22, 132.68, 131.14, 126.69, 125.57, 124.65, 122.84, 121.20 **FT-IR (neat, \bar{v}):** 1570(s), 1502(s), 1388(m), 1329(s), 1080(s), 1009(m), 844(m), 814(m), 738(s), 504(w).

2. Compound characterisation data (2a):

4-(phenylthio)benzonitrile : Chemical Formula: C13H9NS; Colourless solid; Yield: 116 mg (75 %); **M. P**: 80 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.42-7.52 (m, 7H), 7.13 (m, 2H), ¹³**C NMR (CDCl₃, 100 MHz):** 145.77, 134.55, 132.40, 130.81, 129.44, 127.30, 118.85, 108.67. **FT-IR (neat,** \bar{v}): 2217, 1581(s), 1470(s), 1389(m), 1180(m), 1078(s), 1006(m), 814(s), 740(m), 583(m), 537(m), 496(s).

3. Compound characterisation data (3a):

4-((4-chlorophenyl)thio)benzonitrile: Chemical Formula: $C_{13}H_8NSCl$; Colourless solid; Yield: 123 mg (74 %); **M. P**: 88 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 7.49-7.51 (m, 2H), 7.38-7.45 (m, 4H), 7.18 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): 144.92, 139.57, 135.75, 133.40, 132.52, 130.17, 129.71, 129.56, 127.57, 116.65, 110.79, 109.16. **FT-IR (neat,** \bar{v}): 2217, 1582(s), 1471(s), 1389(m), 1327(s), 1079(s), 1008(m), 815(s), 737(s), 539(m), 485(s).

4. Compound characterisation data (4a):

(4-nitrophenyl)(phenyl) sulfane : Chemical Formula: $C_{12}H_9NO_2S$; yellow Colour solid; Yield: 104 mg (90 %); M. P: 86 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 8.04-8.08 (m, 2H), 7.44-7.56 (m, 5H), 7.18 (m, 2H). ¹³C NMR (CDCl₃, 100 MHz): 148.52, 145.37, 134.76, 130.47, 130.05,

129.69, 126.68, 124.05. **FT-IR (neat,** *v***):** 1577(s), 1507(s), 1327(s), 1177(m), 1076(s), 1012(m), 840(s), 739(s), 685(s), 507(s).

5. Compound characterisation data (5a):

(4-chlorophenyl)(4-nitrophenyl)sulfane: Chemical Formula: $C_{12}H_8NO_2SCl$; Colourless solid; Yield: 113 mg (85 %); M. P: 90 °C. ¹H NMR (400 MHz, CDCl₃): δ = 8.23 (dd, J=8.3, 1.4 Hz, 1H), 7.22-7.53 (m, 6H), 6.86 (dd, J=8.2, 1.2 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz): 145.12, 137.11, 136.74, 136.53, 135.57, 133.40, 129.63,128.25, 126.84, 125.28. FT-IR (neat, \bar{v}): 1576(s), 1501(s), 1388(m), 1327(s), 1079(s), 1007(m), 834(m), 812(m), 737(s), 677(w), 533(w).

6. Compound characterisation data(6a):

1-(4-Phenylsulfanylphenyl)ethanone: Chemical Formula: $C_{14}H_{12}OS$; Colourless solid; Yield: 85 mg (73 %); **M. P**: 69 ° C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.82(m, 2H), 7.49 (dd, J=6.6, 4.1 Hz, 2H), 7.40 (m, 3H), 7.20 (m, 2H), 2.55 (s, 3H). ¹³**C NMR (100MHz, CDCl₃):** δ 197.20, 144.97, 134.47, 133.91, 132.06, 129.71, 128.92, 128.92, 127.45, 26.51. **FT-IR (neat, \bar{\boldsymbol{v}}):** 3337(w), 1678(s), 1585(s), 1474(w), 1398(w), 1358(m), 1264(s), 1090(m), 1016(s), 957(m), 821(m), 748(m), 692(m), 587(w).

7. Compound characterisation data (7a):

(3-nitrophenyl)(phenyl)sulfane: Chemical Formula: $C_{12}H_9O_2NS$; yellow Colour solid; Yield: 100 mg (80 %); M. P: 82 ° C. ¹H NMR (400 MHz, CDCl₃): δ = 8.22 (dd, J=8.2, 1.4 Hz, 1H), 7.59 (m, 2H), 7.47(m, 3H), 7.21 (m, 2H), 6.85(dd, J=8.2, 1.2 Hz, 1H) ¹³C NMR (CDCl₃, 100 MHz): 145.01, 139.47, 135.91, 133.43, 131.17, 130.93, 130.09, 129.01, 128.33, 126.45, 125.75,

124.98. **FT-IR (neat,** $\bar{\boldsymbol{v}}$): 1583(s), 1510(s), 1447(m), 1333(s), 1299(m), 1165(w), 1104(s), 1043(s), 906(s), 851(m), 724(s), 485(s).

8. Compound characterisation data (8a):

(4-chlorophenyl)(3-nitrophenyl)sulfane: Chemical Formula: $C_{12}H_8NO_2SCl$; yellow colour solid; Yield: 120 mg (78 %); **M. P**: 93 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 8.23 (dd, J=8.3, 1.4 Hz, 1H), 743-7.55 (m, 4H), 7.37 (m, 2H), 6.85(dd, J=8.2, 1.2 Hz 1H) ¹³C NMR (CDCl₃, 100 MHz): 145.12, 138.74, 137.11, 136.53, 133.57, 130.41, 129.61, 128.23, 125.86, 125.27. **FT-IR (neat,** \bar{v}): 1570(s), 1499(s), 1330(m), 1295(s), 1085(s), 815(m), 727(s), 490(m).

9. Compound characterisation data (9a):

2-((4-methoxyphenyl)thio)-3-nitropyridine : Chemical Formula: $C_{12}H_{10}N_2O_3S$; yellow Colour solid; Yield: 64 mg (58 %); **M. P**: 138 °C. ¹**H NMR (400 MHz, CDCl₃):** δ = 7.84(m, 2H), 7.55 (m, 3H), 7.04(d, 2H), 4.19(s, 3H) ¹³**C NMR (CDCl₃, 100 MHz):** 158.57, 140.62, 137.25, 135.54, 131.87, 129.84, 129.79, 129.28, 128.93, 126.07, 118.00, 38.73. **FT-IR (neat, \bar{\boldsymbol{v}}):** 2920(s), 2854(m), 1706(s), 1580(m), 1458(s), 1338(s), 1286(s), 1175(s), 1120(m), 1071(m), 1025(m), 966(m), 852(s), 740(m), 696(s), 614(m), 547(m), 511(m).

10. Compound characterisation data (10a):

(3-methoxyphenyl)(phenyl)sulfane: Chemical Formula: $C_{13}H_{12}OS$; Colourless liquid; Yield: 58 mg (60 %). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.36$ (m, 2H), 7.31 (m, 2H), 7.18-7.26 (m, 2H), 6.73-6.91(m, 3H), 3.75(s, 3H) ¹³C NMR (CDCl₃, 100 MHz): 160.06, 137.25, 135.26, 131.45, 129.98, 129.25, 127.28, 122.96, 115.90, 112.80, 55.39. FT-IR (neat, \bar{v}): 2922(m), 1580(s), 1470(s), 1283(m), 1236(s), 1179(m), 1035(s), 966(m), 852(s), 740(s), 685(s), 560(m), 502(s).

11. Compound characterisation data (11a):

(4-methoxyphenyl) (4-nitrophenyl) sulfane: Chemical Formula: $C_{13}H_{11}NO_3S$; yellow colour solid; Yield: 92 mg (72 %); M. P: 82-85 ° C. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.02-8.05$ (m, 2H), 7.45-7.53 (m, 2H), 7.01-7.13 (m, 4H), 3.82 (s, 3H).¹³C NMR (CDCl₃, 100 MHz): 159.72, 147.98 145.17,136.87, 132.01, 126.15, 123.86, 121.68, 117.64, 111.80, 55.98. FT-IR (neat, \bar{v}): 2892(s), 2822(m), 1561(s), 1493(s), 1452(s), 1317(s), 1259(s), 1230(m), 1061(s), 1005(s), 833(s).

12. Compound characterisation data (12a):

(4-nitrophenyl) (p-tolyl) sulfane: Chemical Formula: $C_{13}H_{11}NO_2S$; yellow colour ; Yield: 95 mg (78 %). M. P: 85-90 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.96 (d, *J*= 9.1 Hz, 2H), 7.35 (m, 2H), 7.19 (m, 2H), 7.05(m, 2H), 2.34 (s, 3H). ¹³C NMR (CDCl₃, 100 MHz): 148.60, 143.81, 138.45, 134.05, 131.59, 129.63, 128.85, 125.45, 123.97, 122.94, 20.30. FT-IR (neat, \bar{v}): 2894(m), 2818(m), 2231(w), 1563(s), 1495(s), 1456(w), 1321(s), 1263(m), 1072(m), 1009(m), 895(s), 836(m).

Fig. S23. ¹³C NMR spectrum of compound **1a** in CDCl₃

Fig. S24. Neat FT-IR spectrum of complex 1a

Fig. S25. ¹H NMR spectrum of compound **2a** in CDCl₃

Fig. S27. Neat FT-IR spectrum of complex 2a

Fig. S29. ¹³C NMR spectrum of compound **3a** in CDCl₃

Fig. S30. Neat FT-IR spectrum of complex 3a

Fig. S31. ¹H NMR spectrum of compound 4a in CDCl₃

Fig. S33. Neat FT-IR spectrum of complex 4a

Fig. S35. ¹³C NMR spectrum of compound **5a** in CDCl₃

Fig. S37. ¹H NMR spectrum of compound **6a** in CDCl₃

Fig. S39. Neat FT-IR spectrum of complex 6a

Fig. S43. ¹H NMR spectrum of compound 8a in CDCl₃

Fig. S45. Neat FT-IR spectrum of complex 8a

Fig. S47. ¹³C NMR spectrum of compound **9a** in CDCl₃

Fig. S48. Neat FT-IR spectrum of complex 9a

Fig. S49. ¹H NMR spectrum of compound **10a** in CDCl₃

Fig. S51. Neat FT-IR spectrum of complex 10a

Fig. S53. ¹³C NMR spectrum of compound **11a** in CDCl₃

Fig. S55. ¹H NMR spectrum of compound **12a** in CDCl₃

Fig. S57. Neat FT-IR spectrum of complex 12a

	1	2	3	4
Empirical formula	$C_{30}H_{28}N_4Se_2Cl_2Zn$	$C_{30}H_{28}N_4Se_2Br_2Zn$	$C_{28}H_{48}N_8Se_4F_8B_2Zn$	C ₂₈ H ₄₈ N ₈ Se ₄ O ₈ Cl ₂
				Zn
Formula weight	737.93	827.68	1089.61	1072.85
Temperature (K)	293	293	293	293
Crystal system	Triclinic	Triclinic	Tetragonal	Triclinic
Space group	P1	P-1	I41/a	P-1
a/Å	8.2138(4)	8.3550(7)	12.4234(2)	12.6182(9)
b/Å	11.5106(6)	11.5840(8)	12.4234(2)	12.6356(9)
c/Å	16.2370(9)	16.3071(11)	27.7432(11)	15.6832(12)
α/°	93.013(4)	92.900(6)	90	67.891(7)
β/°	96.577(4)	96.600(6)	90	68.825(7)
γ/°	93.489(4)	92.887(6)	90	89.725(6)
Volume (Å ³)	1519.45(13)	1563.3(2)	4281.9(2)	2135.2(3)
Z	4	4	4	2
$ ho_{ m calc}/ m mg\ mm^{-3}$	1.6114	1.7583	1.6901	1.6686
Absorption	5.684	6.947	5.351	6.28
coefficient (μ /mm ⁻				
1)				
F(000)	729.5	800.3	2139.0	1058.3
Reflections	10642	9043	4375	8035
collected				
R _{int}	0.0231	0.0419	0.0185	0.0249
GOF on F^2	1.073	1.183	1.041	1.062
$R_1 (I > 2\sigma(I))$	0.0302	0.0691	0.0536	0.0780
$wR_2(I > 2\sigma(I))$	0.0780	0.2163	0.1478	0.2084
R_1 values (all data)	0.0358	0.0975	0.0695	0.0953
R_2 values (all data)	0.0841	0.3001	0.1735	0.2522

Table S1: Solid state structural parameters of 1-4

	5
Empirical formula	$C_{14}H_{30}N_4Se_2Br_2Zn$
Formula weight	631.48
Temperature (K)	293
Crystal system	Orthorhombic
Space group	Pbca
a/Å	14.3427(6)
b/Å	14.0781(5)
c/Å	21.6645(8)
α/°	90
β/°	90
γ/°	90
Volume (Å ³)	4374.5(3)
Z	4
$ ho_{ m calc}/ m mg~mm^{-3}$	1.9167
Absorption	9.667
coefficient (μ /mm ⁻	
1)	
<i>F</i> (000)	2399.1
Reflections	9953
collected	
$R_{\rm int}$	0.0388
GOF on F^2	1.662
$R_1 (I > 2\sigma(I))$	0.1307
$wR_2(I > 2\sigma(I))$	0.3611
R_1 values (all data)	0.1694
R_2 values (all data)	0.4641

Table S2: Solid state structural parameters of 5

Fig. S58. The solid state structure of 3. The disorded BF₄⁻ anions are omitted for clarity. Selected bond lengths (Å) and bond angles (°): Zn(1)-Se(1) 2.471(6), Se(1)-Zn(1)-Se(2) 104.86(14), Se(1)-Zn(1)-Se(3) 104.86.

DFT Calculation^[1,2]

Bond orbital	Occupancy	Coefficients		Hybrids
n _{N3}	0.78660			s(0.00%)p 1.00(100.00%)
n _{C4}	0.96230			s(53.09%)p 0.88(46.91%)
n* _{C4}	0.32839			s(0.00%)p 1.00(100.00%)
n _{N5}	0.78398			s(0.00%)p 1.00(100.00%)
π^*_{C1-C2}	0.13546	49.74%	0.7052*C1	s(0.00%)p 1.00(100.00%)
		50.26%	-0.7090*C2	s(0.00%)p 1.00(100.00%)
σ* _{C1-N5}	0.02234	62.88%	0.7930*C1	s(26.83%)p 2.73(73.17%)
		37.12%	-0.6092*N5	s(31.93%)p 2.13(68.07%)

Table S3: Imidazolydene

Table S4: Imidazolydene

Donor	Acceptor	ΔE kcal/mol	E _{donor} -E _{acceptor} a.u.	F(i,j) a.u.
n _{N3}	n* _{C4}	44.76	0.19	0.125
n _{N3}	π^{*}_{C1-C2}	16.01	0.27	0.086
n _{N5}	n* _{C4}	44.82	0.19	0.125
n _{N5}	π^*_{C1-C2}	15.80	0.27	0.085
n _{C4}	σ* _{C1-N5}	4.01	0.67	0.066
n _{C4}	σ* _{C2-N3}	3.96	0.68	0.066

Table S5: <u>Imidazathione</u>

Bond orbital	Occupancy	Coefficients		Hybrids
n _{N3}	0.78766			s(0.00%)p 1.00(100.00%)
n* _{c4}	0.49293			s(0.00%)p 1.00(100.00%)
n _{N5}	0.78766			s(0.00%)p 1.00(100.00%)
n ¹ _{S8}	0.93873			s(0.00%)p 1.00(100.00%)
n ² _{S8}	0.82259			s(0.00%)p 1.00(100.00%)
π* _{C1-C2}	0.13512	50.00%	0.7071*C1	s(0.00%)p 1.00(100.00%)
		50.00%	-0.7071*C2	s(0.00%)p 1.00(100.00%)
σ* _{N3-C4}	0.03428	36.48%	0.6040* 3	s(34.01%)p 1.94(65.99%)
		63.52%	-0.7970*C4	s(29.98%)p 2.34(70.02%)
σ* _{C4-N5}	0.03428	63.52%	0.7970*C4	s(29.98%)p 2.34(70.02%)
		36.48%	-0.6040*N5	s(34.01%)p 1.94(65.99%)

Table S6: <u>Imidazathione</u>

Donor	Acceptor	∆E kcal/mol	E _{donor} -E _{acceptor} a.u.	F(i,j) a.u.
n _{N3}	π* _{C1-C2}	15.98	0.27	0.086
n _{N5}	n* _{C4}	63.13	0.11	0.126
n _{N5}	π^{*}_{C1-C2}	15.98	0.27	0.086
n _{S8}	σ* _{N3-C4}	6.08	0.57	0.076
n _{S8}	σ* _{C4-N5}	6.08	0.57	0.076
n _{S8}	n* _{C4}	208.53	0.02	0.096

Table S7: <u>Imidazaselone</u>

Bond orbital	Occupancy	Coefficients		Hybrids
n _{N3}	0.78415			s(0.00%)p 1.00(100.00%)
n* _{C4}	0.49199			s(0.00%)p 1.00(100.00%)
n _{N5}	0.78415			s(0.00%)p 1.00(100.00%)
n _{Se16}	0.94484			s(0.00%)p 1.00(99.99%)
				d0.00(0.01%)
π* _{C1-C2}	0.13537	50.00%	0.7071*C1	s(0.00%)p 1.00(100.00%)
		50.00%	-0.7071*C2	s(0.00%)p 1.00(100.00%)
σ* _{N3-C4}	0.03164	36.09%	0.6007*N3	s(34.33%)p 1.91(65.67%)
		63.91%	-0.7995*C4	s(29.69%)p 2.37(70.31%)
σ* _{C4-N5}	0.03164	63.91%	0.7995*C4	s(29.69%)p 2.37(70.31%)
		36.09%	-0.6007*N5	s(34.33%)p 1.91(65.67%)

Table S8: <u>Imidazaselone</u>

Donor	Acceptor	ΔE kcal/mol	E _{donor} -E _{acceptor} a.u.	F(i,j) a.u.
n _{N3}	n* _{C4}	62.08	0.12	0.126
n _{N3}	π^{*}_{C1-C2}	15.97	0.27	0.086
n _{N5}	n* _{C4}	62.08	0.12	0.126
n _{N5}	π* _{C1-C2}	15.97	0.27	0.086
n _{Se16}	σ* _{N3-C4}	4.98	0.56	0.068
n _{Se16}	σ* _{C4-N5}	4.98	0.56	0.068

References

- ferences
 1) Gaussian 16 Revision A 03 M I Frisch G W Trucks H B Schlegel G E Scuseria M A Rohh J R Cheeseman G Scalmani, V Barone, G A Petersson H Nakatsuii X Li M Caricato A V Marenich I Bloino B G Janesko R Gomnerts B Mennucci H P Hratchian I V Ortiz A F Izmavlov I L Sonnenberg D Williams-Young F Ding F Lipnarini F Egidi I Goings B Peng A Petrone T Henderson D Ranasinghe V G Zakrzewski I Gao N Rega G Zheng W Liang M Hada M Ehara K Tovota R Fukuda, I Hasegawa M Ishida T Nakaiima Y Honda O Kitao H Nakai T Vreven K Throssell I A Montgomerv Ir I F Peralta F Ogliaro M I Bearnark I I Hevd E N Brothers K N Kudin V N Staroverov T A Keith R Kobavashi I Normand K Raghavachari A P Rendell I C Burant S S Iyengar I Tomasi M Cossi I M Millam M Klene C Adamo R Cammi I W Ochterski R I Martin K Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016. CT, 2016.
- 2) GaussView, Version 6, R. Dennington, T. A. Keith, and J. M. Millam, Semichem Inc., Shawnee Mission, KS, 2016.