Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Tuning Structure and Photoinduced Linkage Isomerism of Tetrapyridine Nitrosyl Ruthenium(II) Complexes by Changing of the *trans*-to-NO Coordinated Ligand

Vasily Vorobyev^{a,b,c,*}, Artem A. Mikhailov^{a,b}, Vladislav Yu. Komarov^{a,b}, Alexander N. Makhinya^{a,b}, Gennadiy A. Kostin^{a,b}

^aNikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Science, Novosibirsk, 630090, Russia

^bNovosibirsk State University, Novosibirsk, 630090, Russia

^cDepartment of Chemistry and the Center for Photochemical Sciences, Bowling Green State University, Bowling Green, OH 43402, USA

*Corresponding author: vasily.vorob@gmail.com

Figure S1

. Pseudo-hexagonal package of hydrogen-bonded ruthenium cations in the structure of $[RuNOPy_4OH](ClO_4)_2 \cdot H_2O$.

The package of layers in the structure of $[RuNOPy_4H_2O](ClO_4)_3 \cdot 2H_2O$.

The package of layers in the structure of $[RuNOPy_4Cl](ClO_4)_2 \cdot H_2O$. Hydrogen bonds between perchlorate anions and water molecules are shown in dash.

Table S1. Selected geometrical parameters and vibrational frequencies (cm⁻¹) of $[RuNOPy_4X]^{n+}$ complexes for X = OH⁻, Cl⁻, and H₂O calculated in the gas phase.

	GS, Ru-NO			MS1, Ru-ON		
	1 , G	2 , W	3 , Cl	1 , G	2 , W	3 , Cl
Ru-NO	1.783	1.752	1.778	1.868	1.843	1.869
N-O	1.153	1.138	1.149	1.153	1.139	1.149
Ru-Py	2.098	2.103	2.104	2.088	2.094	2.094
Ru-X	1.931	2.099	2.278	1.910	2.058	2.245
mean Py tilt	54.1	43.8	46.4			
Ru shift	0.130	0.142	0.095			
$\nu(NO)_{DFT}$	1916	1999	1931	1837	1902	1846
$\nu(NO)_{exp}$	1873	1933	1906	1728	1780	1766

	G	S		M	S1
Energy, eV	Occ.	Scheme	Energy, eV	Occ.	Scheme
-14.059	2	****	-14.071	2	
-13.961	2	esist	-13.908	2	
-13.953	2	***	-13.899	2	-
-13.708	2		-13.693	2	
-13.653	2		-13.491	2	-
-13.650	2		-13.486	2	-
-13.342	2		-13.330	2	
-13.130	2	-	-12.980	2	
-13.129	2	-	-12.979	2	
-12.972	2		-12.762	2	2 A A
-10.573	0		-11.128	0	
-10.572	0		-11.127	0	
-9.231	0		-9.307	0	
-9.013	0	-	-8.804	0	

Table S2. Molecular orbitals in the ground and metastable states of complex **3** $[RuNOPy_4Cl]^{2+}$.

-8.817	0	E	-8.799	0	E
-8.812	0	***	-8.790	0	
-8.800	0		-8.782	0	
-8.796	0	2	-8.689	0	*
-8.404	0		-8.428	0	
-8.106	0	**	-8.106	0	

Table S3. The excitation energy (eV), oscillator strength (times 10^3), and transition of the electron density between molecular orbitals of the computed TD-DFT transitions in complexes **1-3** and their metastable states.

Fig. S2. The normalized v(NO) absorption of the studied Ru-ON mixture in blue, red, and green data points from left to right, respectively. For the compound **1**, the complexes are *fac*-K₂[RuNO(NO₂)₂Cl₃], *trans*-[RuNOPy₄OH](ClO₄)₂·H₂O (**1**), and [RuNO(NH₃)₅]Cl₃. For the compound **2**, the complexes are *trans*-[RuNO(NH₃)₄OH]Cl₂, [RuNO(NH₃)₅]Cl₃, and *trans*-[RuNOPy₄H₂O](ClO₄)₃·H₂O (**2**). Note that blue data points from *trans*-[RuNO(NH₃)₄OH]Cl₂ are contaminated by the *trans*-[RuNOPy₄OH](ClO₄)₂·H₂O (**1**). For the compound **3**, the complexes are *cis*-Cs[RuNO(NH₃)Cl₄]·H₂O, *trans*-[RuNOPy₄Cl](ClO₄)₂·H₂O (**3**), and [RuNO(NH₃)₅]Cl₃.

Complex 1, first sample

Complex 1, second sample

Complex 2, first sample

Complex 2, second sample

100 125 Time [s]

150

175

200

Complex 3, second sample

50

25

75

Fig. S3. Isothermal kinetic of MS1 – GS transformation for [RuNO(Py)₄OH](ClO₄)₂·H₂O. The sample pellet was cooled in a cryostat to 80 K, irradiated by 445 nm 100 mW LED. Next, the sample was heated to a specific temperature and the MS1 absorption band was monitored over time. The curves were treated as first-order kinetic. The activation parameters were determined from the Arrhenius plot lnk – 1/(RT): $E_a = 50.9$ (7.5) kJ mol⁻¹, lg(k₀) = 9.6(1.8). $T_d = 212(3)$ K.

Fig. S4. The reaction cavities accessible for the atom nucleus of NO group in the complexes 1-3. Z-axe is the direction of Ru-N-O.

trans-[RuNOPy₄OH](ClO₄)₂·H₂O (1) - two symmetrically inequivalent fragments

trans-[RuNOPy₄H₂O](ClO₄)₃·2H₂O ($\mathbf{2}$)

trans-[RuNOPy₄Cl](ClO₄)₂·H₂O (**3**)

Fig. S5. Voronoi-Dirichlet polyhedrons for the NO group in complexes 1-3.

trans-[RuNOPy₄OH](ClO₄)₂·H₂O (1) - two symmetrically inequivalent fragments

 $\textit{trans-}[RuNOPy_4H_2O](ClO_4)_3\!\cdot\!2H_2O\left(\textbf{2}\right)$

trans-[RuNOPy₄Cl](ClO₄)₂·H₂O ($\mathbf{3}$)