ELECTRONIC SUPPORTING INFORMATION

"Sweet" ionic liquids comprising the acesulfame anion – synthesis, physicochemical properties and antifeedant activity towards stored product insects

Witold Stachowiak,¹ Tomasz Rzemieniecki,¹ Tomasz Klejdysz,² Juliusz Pernak,¹ Michał Niemczak,^{*,1}

- ¹ Department of Chemical Technology, Poznan University of Technology, Poznan 60-965, Poland
- ² Institute of Plant Protection National Research Institute, Poznan 60-318, Poland
- * Corresponding author at: Poznan University of Technology, Berdychowo 4, Poznan 60-965, Poland; Tel.: +48 616653581. E-mail: michal.niemczak@put.poznan.pl

Figure S1. ¹H NMR spectrum of ethyl(2-(2-hydroxyethoxy)ethyl)dimethylämmonium acesulfame (1).

Figure S2. ¹³C NMR spectrum of ethyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (1).

Figure S3. FT-IR spectrum of ethyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (1).

Figure S4. UV spectrum of ethyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c
$$\approx 1,52 \times 10^{-4} \frac{mol}{dm^3}$$
) (1).

Figure S5. ¹H NMR spectrum of butyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (2).

Figure S6. ¹³C NMR spectrum of butyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (2).

Figure S7. FT-IR spectrum of butyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (2).

Figure S8. UV spectrum of butyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c

Figure S9. ¹H NMR spectrum of hexyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (3).

Figure S10. ¹³C NMR spectrum of hexyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (3).

Figure S11. FT-IR spectrum of hexyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (3).

Figure S12. UV spectrum of hexyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c

Figure S13. ¹H NMR spectrum of octyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (4).

Figure S14. ¹³C NMR spectrum of hexyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (4).

Figure S15. FT-IR spectrum of octyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (4).

Figure S16. UV spectrum of octyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c

(4).

Figure S17. ¹H NMR spectrum of decyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (5).

Figure S18. ¹³C NMR spectrum of decyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (5).

Figure S19. FT-IR spectrum of decyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (5).

Figure S20. UV spectrum of decyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c
$$\approx 2,14 \times 10^{-4} \frac{mol}{dm^3}$$
) (5).

Figure S21. ¹H NMR spectrum of dodecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (6).

Figure S22. ¹³C NMR spectrum of dodecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (6).

Figure S23. FT-IR spectrum of dodecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (6).

Figure S24. UV spectrum of dodecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c

Figure S25. ¹H NMR spectrum of tetradecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (7).

Figure S26. ¹³C NMR spectrum of tetradecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (7).

Figure S27. FT-IR NMR spectrum of tetradecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (7).

Figure S28. UV spectrum of tetradecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (c
$$\approx 1.6 \times 10^{-4} \frac{mol}{dm^3}$$
) (7).

Figure S29. ¹H NMR spectrum of hexadecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (8).

Figure S30. ¹³C NMR spectrum of hexadecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (8).

Figure S31. FT-IR spectrum of hexadecyl(2-(2-hydroxyethoxy)ethyl)dimethylammonium acesulfame (8).

Table S1. Density values (g cm ⁻³), molecular weight (M_w) and mole	ecular volume (V _m) at 20 °C for ILs 1–5.
---	--------------------------------------	---

п										Ten	operature	[°C]			M_w	Vm
IL	20	SD ^a	30	SD	40	SD	50	SD	60	SD	70	SD	80	SD	[g mol ⁻¹]	[cm ³ mol ⁻¹]
1	1.308	0.00003	1.30076	0.00003	1.29416	0.00004	1.28733	0.00002	1.28046	0.00004	1.27359	0.00002	1.26653	0.00002	296.34	235.78
2	1.244	0.00003	1.23747	0.00003	1.23097	0.00004	1.22435	0.00003	1.21766	0.00002	1.21097	0.00002	1.20426	0.00001	324.39	260.94
3	1.180	0.00001	1.17363	0.00003	1.16704	0.00004	1.16041	0.00002	1.15379	0.00002	1.14703	0.00004	1.14011	0.00002	352.44	298.63
4	1.149	0.00005	1.14243	0.00003	1.13602	0.00003	1.12951	0.00001	1.12281	0.00003	1.11613	0.00003	1.10953	0.00002	380.49	332.24
5	1.113	0.00002	1.10659	0.00002	1.10002	0.00004	1.09346	0.00003	1.08683	0.00002	1.08011	0.00002	1.07337	0.00004	408.54	367.01
	^a standard	l deviation														

Table S2. Logarithmic regression data regarding influence between alkyl length and density or refractive index values at 20 °C for ILs 1–5.

Property	Coefficient $y = a - \frac{1}{2}$	R ²		
	а	b	с	
Density	1.598	0.193	2.499	0.99
Refractive index	1.649	0.052	9.030	0.98

Table S3. Linear regression data regarding influence between temperature and values of density for ILs 1–5.

П	Coefficient values f	D 2	
114	a	b	N
1	-0.0007	1.3213	0.9999
2	-0.0007	1.2574	1.0000
3	-0.0007	1.1937	0.9999
4	-0.0007	1.1622	0.9999
5	-0.0007	1.1265	1.0000

Table S4. Refractive index values determined for ILs 1–5.

п		Temperature [°C]														
112	20	SD ^a	30	SD	40	SD	50	SD	60	SD	70	SD	80			
1	1.52382	0.00003	1.52160	0.00001	1.51905	0.00002	1.51650	0.00001	1.51399	0.00003	1.51148	0.00001	1.50881			
2	1.51392	0.00002	1.51146	0.00004	1.50886	0.00001	1.50633	0.00001	1.50387	0.00001	1.50143	0.00001	1.49887			
3	1.50917	0.00001	1.50686	0.00001	1.50441	0.00001	1.50189	0.00001	1.49939	0.00001	1.49687	0.00002	1.49430			
4	1.49953	0.00001	1.49703	0.00002	1.49440	0.00003	1.49170	0.00002	1.48897	0.00004	1.48611	0.00003	1.48356			
5	1.49546	0.00002	1.49287	0.00001	1.49014	0.00001	1.48735	0.00002	1.48453	0.00002	1.48163	0.00001	1.47897			

^a standard deviation

 Table S5. Linear regression data regarding influence between temperature and values of refractive index for ILs 1–5.

<u> </u>	1						
Coefficient values	for $y = ax + b$	D ²					
a	b	N					
-0.00025	1.52902	0.9995					
-0.00025	1.51893	0.9999					
-0.00025	1.51427	0.9998					
-0.00027	1.50504	0.9997					
-0.00028	1.50113	0.9998					
	Coefficient values a -0.00025 -0.00025 -0.00025 -0.00027 -0.00028	Coefficient values for $y = ax + b$ ab-0.000251.52902-0.000251.51893-0.000251.51427-0.000271.50504-0.000281.50113					

Figure S33. Shear stress versus shear rate for ILs 1–5.

$\bigcirc 1 \quad \bigcirc 2 \quad \bigcirc 3 \quad \bigcirc 4 \quad \bigcirc 5$

Fig. S34. Arrhenius plots for ILs 1–5, where η is viscosity and T is temperature.

тт		Temperature [°C]															D2
IL	20	SD ^a	30	SD	40	SD	50	SD	60	SD	70	SD	80	SD	[kJ mol ⁻¹]	[Pa s]	K ²
1	5.307	0.023	2.089	0.003	0.924	0.002	0.472	0.001	0.267	0.001	0.162	0.001	0.106	0.001	55.92	-21.45	0.99
2	4.557	0.020	1.776	0.003	0.820	0.001	0.434	0.001	0.251	0.001	0.157	0.001	0.106	0.001	53.55	-20.65	0.99
3	3.572	0.014	1.531	0.002	0.756	0.002	0.421	0.001	0.254	0.001	0.178	0.001	0.153	0.001	46.03	-17.84	0.98
4	0.984	0.001	0.482	0.001	0.272	0.001	0.168	0.001	0.110	0.001	0.078	0.001	0.061	0.001	39.89	-16.54	0.99
5	10.451	0.047	4.067	0.008	1.880	0.003	0.961	0.002	0.536	0.001	0.326	0.001	0.216	0.001	55.45	-20.58	0.99

Table S6. Viscosity values (Pa s) and Arrhenius equation fitting parameters for ILs 1–5.

^a standard deviation; ^b According to Arrhenius-Guzmán equation: $\ln(\eta) = \ln \eta_{\infty} + Ea/(R \cdot T)$, where η is the dynamic viscosity, E_a is the activation energy for viscous flows, T is the temperature of the measurement, and $\ln \eta_{\infty}$ is the natural logarithm of the viscosity at infinite temperature

Table S7. Octanol-water partition coefficient logarithms (log K_{OW}) and cubic regression data regarding influence between alkyl length and logK_{OW} for ILs 1–8.

IL	1	2	3	4	5	6	7	8	Co y =	efficient $ax^3 + b$	values for $x^2 + cx$	or + d	R ²
									а	b	с	d	
log K _{OW}	-1.064	-0.688	-0.329	0.340	1.059	1.231	1.577	1.775	0.001	0.022	0.027	1 250	0.08
SD ^a	0.011	0.042	0.054	0.006	0.013	0.007	0.011	0.016	-0.001	0.033	0.027	-1.230	0.98

^a standard deviation

		(Franar	y weev	vil			Con	fused	flour b	eetle		Rice weevil							Khapra beetle						
п		(Sitop	ohilus g	granari	ius L.)		(Tribolium confusum Duv.)					(Sitophilus oryzae L.)						(Trogoderma granarium Ev.)								
11.			Ad	ults			Adults					Adults						Larvae								
	R			Α		Т		R	I A	4]]	Т		R		Α		Г	R		Α		Т			
1	70	а	-5	a	64	a	43	ab	19	a	62	ab	38	a	6	a	44	a	20	ab	-5	a	15	ab		
2	76	а	19	abc	95	a	10	a	1	a	11	a	53	ab	8	a	62	ab	48	bc	4	ab	52	b		
3	45	a	18	abc	64	a	82	b	2	a	84	ab	63	abc	5	a	68	abc	-19	а	-23	a	-42	a		
4	56	a	9	ab	65	a	82	b	-5	a	77	ab	39	a	3	a	42	a	12	ab	7	ab	19	ab		
5	95	а	32	abc	127	a	96	b	25	a	121	b	94	bc	16	ab	110	bcd	89	с	-1	a	87	bc		
6	60	а	36	abc	97	a	99	b	20	a	119	b	98	c	20	abc	118	cd	99	с	63	bc	162	cd		
7	79	а	48	bc	127	a	97	b	15	a	112	b	94	bc	51	bc	145	d	92	с	90	c	182	d		
8	63	a	66	c	129	a	86	b	16	a	102	b	90	bc	52	c	141	d	95	с	92	c	187	d		
LSD _{0.05}	62	2.3	53	53.8).5	65.2		42.6		79	0.0	44	4.6	36	5.7	57.8		68.2		64.8		85	5.0		
Azadirachtin (reference)	99		91		190		100		85		185		-		-		-		100		94		194			

 Table S8. Relative (R), absolute (A) and total (T) deterrence coefficients regarding ILs' 1–8 activity toward tested organisms