Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary material

TiO₂ microspheres impregnated alginate: A novel hybrid sorbent for uranium removal from aquatic bodies

Hirakendu Basu¹, Mehzabin Vivek Pimple¹, Sudeshna Saha¹, Asha Patel², Chhatravijay Dansena², Rakesh Kumar Singhal¹

¹ Analytical Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai -400085, India ² Guru Ghasidas Central University, Bilaspur, India

BET surface area determination of TiO2 microspheres:

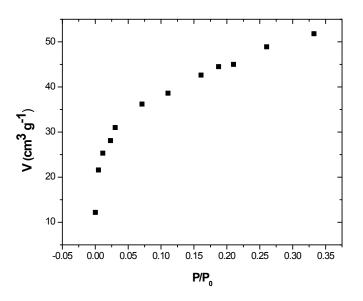


Fig. S1: BET plot of TiO₂ microspheres

Composition and stability of the beads

To study the effect of TiO_2 MS loading on calcium alginate for the sorption of U, loading was varied from 1 to 50 wt.% and it was observed that 18% loading of SM in 4% Ca-ALG is optimum. When the loading exceeded 20 %, integrity of the beads was affected and showed a tendency to be brittle.

Effectiveness of Cal-Alg-TiO₂ MS beads for real water samples

Table S1: U concentration in the spiked groundwater samples before and after treatment with the beads

Sample Id	U concentration before	U concentration after
	treatment	treatment
Groundwater 1	1 μg mL ⁻¹ (spiked)	Not detected (< 10 ng mL ⁻¹)
(Mumbai, India)		
Groundwater 2	110 ng mL ⁻¹ (natural)	Not detected (< 10 ng mL ⁻¹)
(Punjab, India)		

Monitoring of drinking water quality after treatment with the Cal-Alg-TiO₂ MS beads and

Table S2: Physicochemical parameters of groundwater samples before and after treatment of groundwater with Cal-Alg-TiO₂ MS beads

Parameters	Before treatment	After treatment
pH	6-8	6-8
Conductance (mS)	286-435	297-478
Redox potential (mV)	96-126	101-141
DOC (mg L ⁻¹)	6-10	6-11
Ti (μg L ⁻¹)	10-234	12-238
$Cl (mg L^{-1})$	14-21	12-24
Si (mg L ⁻¹)	26-42	25-40
Fe (mg L ⁻¹)	2-5	1-5
Ca (mg L ⁻¹)	40-49	41-50
$Na(mg L^{-1})$	22-28	23-28

Note: The range of the concentration values reported have been derived from analysis of five

different groundwater samples.

Comparison of sorption capacities

Table S3: A comprehensive comparison of the developed material with the earlier reported sorbents for the uranium uptake

Adsorbent	U adsorbent capacity (mg g ⁻¹)	References	Reference no.
Cal-Alg-TiO ₂ MS beads	31.4	This study	-
HA-MCNP composite	47.9	Basu et. al.	8
GO-Ca-Alginate	29.4	Basu et. al.	6
LDO-C	354.2	Yao et. al.	56
Titanate nanowire	358	Yin et. al.	57
Silica microsphere	30	Basu et. al.	41
Organosilica-Phosphonate Hybrids	54-56	Lebed et. al.	58
Silicate RUB-15	152	Chen et. al.	59
Carbon nitride composite	60.51	Wang et. al.	60
Cal-Alg-Chitosan	36.04	Basu et. al.	40
Amberlite IRA-402 resin	213	Solgy et. al.	61
Goethite	66.66	Chegrouche et. al.	62
Activated carbon	45.24	Morsy et. al.	63
Graphene oxide nanosheets	299	Li et. al.	64