## **Supporting Information**

Theoretical Study of the Strain Effect on the Oxygen Reduction Reaction Activity and Stability of FeNC Catalyst

Xiaoming Zhang<sup>a</sup>, Zhangxun Xia<sup>a</sup>, Huanqiao Li<sup>a</sup>, Shansheng Yu<sup>b</sup>, Suli Wang<sup>a</sup>\*,

Gongquan Sun<sup>a</sup>\*

<sup>a</sup>Division of Fuel Cells and Battery, Dalian National Laboratory for Clean Energy, Dalian

Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China 116023

<sup>b</sup>Department of Materials Science, Jilin University, Changchun 130012, PR China

## The thermodynamics of the ORR

Three possible four electrons overall reaction pathways (the associative and dissociative mechanisms) of  $O_2$  reducing to  $H_2O$  in an acid environment is  $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$  (I), which includes.

The ORR occurs on Fe atom:

Mechanism I:

\* + 
$$O_2(g)$$
 +  $4H^+$  +  $4e^- \rightarrow *OOH + 3H^+ + 3e^-$  (S1)

\*OOH + 
$$3H^+$$
 +  $3e^- \rightarrow *O + 2H^+ + 2e^- + H_2O$  (I) (S2)

$$*O + 2H^{+} + 2e^{-} \rightarrow *OH + H^{+} + e^{-}$$
 (S3)

$$*OH + H^{+} + e^{-} \rightarrow * + H_2O$$
 (I) (S4)

Mechanism II:

\* + 
$$O_2(g)$$
 +  $4H^+$  +  $4e^- \rightarrow *OOH + 3H^+ + 3e^-$  (S5)

$$^{*}OOH + 3H^{+} + 3e^{-} \rightarrow 2^{*}OH + 2H^{+} + 2e^{-}$$
 (S6)

$$2^{*}OH + 2H^{+} + 2e^{-} \rightarrow {}^{*}OH + H^{+} + e^{-} + H_{2}O$$
 (I) (S7)

$$*OH + H^{+} + e^{-} \rightarrow * + H_2O (I)$$
 (S8)

Mechanism III:

\* + 
$$O_2(g)$$
 +  $2H^+$  +  $2e^- \rightarrow *OOH + 2H^+ + 2e^-$  (S9)

\*OOH + H<sup>+</sup> + e<sup>-</sup> 
$$\rightarrow$$
 H<sub>2</sub>O<sub>2</sub>\* (S10)

The ORR occurs on Fe atom and adjacent C:

Mechanism IV:

\* + <sup>#</sup> + 
$$O_2(g)$$
 + 4H<sup>+</sup> + 4e<sup>-</sup>  $\rightarrow$  \*OOH + 3H<sup>+</sup> + 3e<sup>-</sup> (S11)

\*OOH + 
$$\#$$
 + 3H<sup>+</sup> + 3e<sup>-</sup> $\rightarrow$  \*O +  $\#$ OH + 3H<sup>+</sup> + 3e<sup>-</sup> (S12)

$$*O + "OH + 3H" + 3e" \rightarrow *OH + "OH + " + 2H" + 2e"$$
 (S13)

\*OH + 
$$^{\#}$$
OH + 2H<sup>+</sup> + 2e<sup>-</sup>  $\rightarrow$  \*OH + H<sup>+</sup> + e<sup>-</sup> + H<sub>2</sub>O (I) (S14)

$$*OH + H^{+} + e^{-} \rightarrow * + H_2O$$
 (I) (S15)

Mechanism V:

\* + <sup>#</sup> +  $O_2(g)$  +  $4H^+$  +  $4e^- \rightarrow *OOH$  +  $3H^+$  +  $3e^-$  (S16)

\*OOH + 
$$^{\#}$$
 + 3H<sup>+</sup> + 3e<sup>-</sup> $\rightarrow$  \*O +  $^{\#}$ OH + 3H<sup>+</sup> + 3e<sup>-</sup> (S17)

$$*O + "OH + 3H" + 3e" \rightarrow *O + H_2O (I) + " + 2H" + 2e" (S18)$$

$$*O + 2H^{+} + 2e^{-} \rightarrow *OH + H^{+} + e^{-}$$
 (S19)

 $*OH + H^{+} + e^{-} \rightarrow * + H_2O$  (I) (S20)

Mechanism VI:

\* + <sup>#</sup> + 
$$O_2(g)$$
 + 4H<sup>+</sup> + 4e<sup>-</sup>  $\rightarrow$  \* $O_2$  + 4H<sup>+</sup> + 4e<sup>-</sup> (S21)

$$*O_2 + 4H^+ + 4e^- \rightarrow *O + *O + 4H^+ + 4e^-$$
 (S22)

$$*O + *O + 4H^{+} + 4e^{-} \rightarrow *O + *OH + 3H^{+} + 3e^{-}$$
 (S23)

\*O + 
$$^{\#}OH$$
 +  $3H^{+}$  +  $3e^{-} \rightarrow ^{*}O$  +  $H_2O$  (I) +  $^{\#}$  +  $2H^{+}$  +  $2e^{-}$  (S24)

\*O + 2H<sup>+</sup> + 2e<sup>-</sup> 
$$\rightarrow$$
\*OH + H<sup>+</sup> + e<sup>-</sup> (S25)

$$*OH + H^{+} + e^{-} \rightarrow * + H_2O$$
 (I) (S26)

where \* and <sup>#</sup> refers to Fe and C active site in FeN<sub>4</sub> model. (I) and (g) refer to the liquid and gas phases, respectively. \*O, \*OH and \*OOH are the adsorbed intermediates.

For each step, the reaction free energy  $\Delta G$  is defined as the difference between free energies of the initial and final states and is given by the expression<sup>1</sup>,

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S + \Delta G_U + \Delta G(pH)$$
(S27)

That is:

$$\Delta G_1 = \Delta G_{OOH^*} - 4.92eV - \Delta G_{H^+}(pH) + eU$$
(S28)

$$\Delta G_2 = \Delta G_{O^*} - \Delta G_{OOH^*} - \Delta G_{H^+}(pH) + eU$$
(S29)

$$\Delta G_3 = \Delta G_{OH^*} - \Delta G_{O^*} - \Delta G_{H^+}(pH) + eU \tag{S30}$$

$$\Delta G_4 = -\Delta G_{0H^*} - \Delta G_{H^+}(pH) + eU \tag{S31}$$

$$\Delta G_6 = \Delta G_{20H^*} - \Delta G_{00H^*} - \Delta G_{H^+}(pH) + eU$$
(S32)

$$\Delta G_7 = \Delta G_{20H^*} - \Delta G_{2^*OH} - \Delta G_{H^+}(pH) + eU$$
(S33)

$$\Delta G_{10} = \Delta G_{H_2 O_2^*} - \Delta G_{00H^*} - \Delta G_{H^+}(pH) + eU$$
(S34)

$$\Delta G_{12} = \Delta G_{O^*} + \Delta G_{OH^*} - \Delta G_{OOH^*} \tag{S35}$$

$$\Delta G_{13} = (\Delta G_{0H^{\#}} + \Delta G_{0H^{*}}) - (\Delta G_{0H^{\#}} + \Delta G_{0^{*}}) - \Delta G_{H^{+}}(pH) + eU$$
(S36)

$$\Delta G_{14} = \Delta G_{OH^*} - (\Delta G_{OH^*} + \Delta G_{OH^*}) - \Delta G_{H^+}(pH) + eU$$
(S37)

$$\Delta G_{18} = \Delta G_{0^*} - (\Delta G_{0H^{\#}} + \Delta G_{0^*}) - \Delta G_{H^+}(pH) + eU$$
(S38)

$$\Delta G_{22} = (\Delta G_{0^{\#}} + \Delta G_{0^{*}}) - 4.92 \tag{S39}$$

$$\Delta G_{23} = (\Delta G_{0H^{\#}} + \Delta G_{0^{*}}) - (\Delta G_{0^{\#}} + \Delta G_{0^{*}}) - \Delta G_{H^{+}}(pH) + eU$$
(S19)

The Gibbs free energies are related to the adsorption energies of the various intermediate species. The adsorption free energy changes of these intermediate species are determined using  $\Delta G_{ads} = \Delta E_{ads}^{DFT} + \Delta ZPE - T\Delta S$ , where  $\Delta E_{ads}^{DFT}$  can be calculated relative to H<sub>2</sub>O and H<sub>2</sub> (The absorption energies were calculated as follows<sup>2</sup>,  $\Delta E_{OH^*} = E(OH^*) - E(*) - (E_{H_2O} - E_{H_2O}) - E(*) - (E_{H_2O} - E_{H_2O})$  $1/2E_{H_2}) \ , \ \ \Delta E_{OOH^*} = E(OOH^*) - E(*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \ \Delta E_{O^*} = E(O^*) - (2E_{H_2O} - 3/2E_{H_2O}) \ , \ \$  $E(*) - (E_{H_20} - E_{H_2}))$ ,  $\Delta ZPE$  and T $\Delta S$  are the zero point energy difference and the entropy change between the absorbed state and the free state, i.e., the gas phase (listed in Table S2), respectively, and T is the temperature (298.15 K in this work). e is the elementary charge and U is the potential difference between the electrode and the normal hydrogen electrode (NHE). The free energy change of H<sup>+</sup> is derived according to  $\Delta G(pH) = k_B T ln(10) \times pH$ ,  $(k_B$  is Boltzmann's constant, and pH = 1). Because the high-spin ground state of an oxygen molecule is difficult to describe in DFT calculations, the free energy of  $O_2(g)$  is derived as  $G_{O_2}(g) = 2G_{H_2O}(l) - 2G_{H_2}(g)$ . Additionally, the activation energy barrier ( $\Delta E_b$ ) is defined as the difference between the energy of the transition structures ( $E_{TS}$ ) and the initial structures ( $E_{IS}$ ),  $\Delta E_b = E_{TS} - E_{IS}$ .

## **Figures and Tables**



Figure S 1 The bond length of C-N and Fe-N in FeNC under various stress.



Figure S 2 The electronic properties of FeNC electrocatalyst under stress: (a) Hirshfeld Charge and spin, (b) d band center and density of states at Fermi level.



Figure S 3 The charge density difference for Cu@FeNC. The isosurface value is 0.005 e/Å<sup>3</sup>. The red colour represents electron accumulation, while the blue colour represents electron depletion. The intensity of colour depends on the amount of electron change: the darkest red marks the most accumulation; the darkest blue marks the most depletion. Gray, carbon atom; Blue, nitrogen atom; Purple, Fe atom; Yellow, Cu atom.

| Strain | I <sub>C-C</sub> (Å) | I <sub>C-N</sub> (Å) | I <sub>Fe-N</sub> (Å) |
|--------|----------------------|----------------------|-----------------------|
| -3.0%  | 1.38                 | 1.35                 | 1.83                  |
| -2.0%  | 1.40                 | 1.36                 | 1.86                  |
| -1.0%  | 1.41                 | 1.37                 | 1.89                  |
| 0.0%   | 1.42                 | 1.38                 | 1.91                  |
| 1.0%   | 1.44                 | 1.39                 | 1.94                  |
| 2.0%   | 1.45                 | 1.40                 | 1.97                  |
| 3.0%   | 1.47                 | 1.41                 | 2.00                  |
| 4.0%   | 1.48                 | 1.44                 | 2.02                  |
| 5.0%   | 1.50                 | 1.45                 | 2.05                  |
| 6.0%   | 1.51                 | 1.46                 | 2.08                  |
| 7.0%   | 1.52                 | 1.47                 | 2.12                  |
| 8.0%   | 1.54                 | 1.45                 | 2.20                  |
| 9.0%   | 1.55                 | 1.46                 | 2.24                  |
| 10.0%  | 1.57                 | 1.47                 | 2.29                  |

 Table S 1
 Bond length of initial C-C in graphene and optimized Fe-N, C-N in FeNC

| Species          | ZPE <sup>3</sup> | TS <sup>3</sup> | ZPE <sup>4</sup> | TS⁴  | ZPE⁵  | TS⁵  | ZPE <sup>*</sup> | ΤS <sup>*</sup> |
|------------------|------------------|-----------------|------------------|------|-------|------|------------------|-----------------|
| 0*               | 0.07             | 0.00            | 0.05             | 0.00 | 0.084 | 0.05 | 0.05             | 0.05            |
| OH*              | 0.36             | 0.00            | 0.36             | 0.06 | 0.386 | 0.07 | 0.37             | 0.10            |
| OOH*             | 0.39             | 0.00            | 0.40             | 0.08 | 0.457 | 0.16 | 0.46             | 0.16            |
| O <sub>2</sub>   | -                | -               | 0.11             | 0.64 | -     | -    | -                | -               |
| $H_2$            | 0.27             | 0.41            | 0.27             | 0.41 | 0.27  | 0.41 | 0.27             | 0.41            |
| H <sub>2</sub> O | 0.56             | 0.67            | 0.56             | 0.67 | 0.56  | 0.67 | 0.56             | 0.67            |

Table S 2 The zero point energies and entropic corrections of oxygenates at 298.15 K

<sup>\*</sup>The present work.

**Table S 3** The geometric properties, electronic properties (d band center, density ofstates at Fermi level, Hirshfelf charge and Hirshfelf spin) and adsorption free energy (eV)of strained FeNC.

| Sample | I <sub>Fe-N</sub> | Charge | Spin  | ε <sub>d</sub> | $ ho_F$ | I <sub>Fe-O</sub> | $\Delta G_{*OH}$ |
|--------|-------------------|--------|-------|----------------|---------|-------------------|------------------|
| -3%    | 1.83              | 0.179  | 1.788 | -1.24          | 1.98    | 1.85              | 0.09             |
| -2%    | 1.85              | 0.187  | 1.838 | -1.27          | 1.67    | 1.84              | 0.41             |
| -1%    | 1.88              | 0.194  | 1.872 | -1.30          | 1.37    | 1.84              | 0.54             |
| 0%     | 1.90              | 0.200  | 1.906 | -1.32          | 1.18    | 1.84              | 0.62             |
| 1%     | 1.93              | 0.207  | 1.937 | -1.35          | 1.02    | 1.84              | 0.67             |
| 2%     | 1.96              | 0.213  | 1.964 | -1.36          | 0.90    | 1.83              | 0.71             |
| 3%     | 1.99              | 0.221  | 1.988 | -1.38          | 0.80    | 1.80              | 0.75             |
| 4%     | 2.02              | 0.229  | 2.010 | -1.39          | 0.73    | 1.83              | 0.78             |
| 5%     | 2.05              | 0.237  | 2.031 | -1.41          | 0.67    | 1.80              | 0.80             |
| 6%     | 2.08              | 0.247  | 2.059 | -1.43          | 0.62    | 1.80              | 0.82             |
| 7%     | 2.12              | 0.258  | 2.118 | -1.46          | 0.68    | 1.82              | 0.78             |
| 8%     | 2.20              | 0.370  | 3.546 | -1.57          | 2.30    | 1.85              | 0.37             |
| 9%     | 2.24              | 0.379  | 3.543 | -1.61          | 2.41    | 1.85              | 0.35             |
| 10%    | 2.29              | 0.389  | 3.530 | -1.68          | 2.55    | 1.84              | 0.30             |

## References

1. He, F.; Li, K.; Yin, C.; Wang, Y.; Tang, H.; Wu, Z., Single Pd atoms supported by graphitic carbon nitride, a potential oxygen reduction reaction catalyst from theoretical perspective. *Carbon* **2017**, *114*, 619-627.

2. Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F., Oxygen vacancies as active sites for water dissociation on rutile TiO(2)(110). *Phys Rev Lett* **2001**, *87* (26), 266104.

3. Ling, C.; Shi, L.; Ouyang, Y.; Zeng, X. C.; Wang, J., Nanosheet Supported Single-Metal Atom Bifunctional Catalyst for Overall Water Splitting. *Nano Lett* **2017**, *17* (8), 5133-5139.

4. Zhou, S.; Liu, N. S.; Wang, Z. Y.; Zhao, J. J., Nitrogen-Doped Graphene on Transition Metal Substrates as Efficient Bifunctional Catalysts for Oxygen Reduction and Oxygen Evolution Reactions. *Acs Applied Materials & Interfaces* **2017**, 9 (27), 22578-22587.

5. Li, M. T.; Zhang, L. P.; Xu, Q.; Niu, J. B.; Xia, Z. H., N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. *Journal of Catalysis* **2014**, *314*, 66-72.