Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information

Competitivity and cooperativity of hydrogen-bonding and tetrel-bonding interactions involving triethylene diamines (DABCO), H₂O and CO₂ in air

Jianming Yang, *a Qinwei Yu, a Fang-Ling Yang, b Ka Lu, b Chao-Xian Yan, b Wei Dou, b Lizi Yang,

^b Pan-Pan Zhou, *^b

^a Xi'an Modern Chemistry Research Institute, Xi'an 710065, Shaanxi, P. R. China. *E-mail: yangjm204@163.com

^b Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, 730000, Lanzhou, P. R. China. *E-mail: zhoupp@lzu.edu.cn

	Method	Bond angle
D2	Non-CP	θ(O2-C1-O3)=177.9
	СР	θ(O2-C1-O3)=178.0
D3	Non-CP	θ(O2-C1-O3)=180.0; θ(O2'-C1'-O3')=179.5
	СР	θ(O2-C1-O3)=180.0; θ(O2'-C1'-O3')=179.5
D5	Non-CP	θ(O2-C1-O3)=175.7
	СР	θ(O2-C1-O3)=176.0
T2	Non-CP	θ(O2-C1-O3)=175.9
	СР	θ(O2-C1-O3)=176.1
Т3	Non-CP	θ(O2-C1-O3)=175.8; θ(O2'-C1'-O3')=175.8
	СР	θ(O2-C1-O3)=176.0; θ(O2'-C1'-O3')=176.0
Т5	Non-CP	θ(O2-C1-O3)=175.1; θ(O2'-C1'-O3')=178.9
	СР	θ(O2-C1-O3)=175.3; θ(O2'-C1'-O3')=179.0
T6	Non-CP	θ(O2-C1-O3)=176.6
	СР	θ(O2-C1-O3)=176.7
T7	Non-CP	θ(O2-C1-O3)=177.4
	СР	θ(O2-C1-O3)=177.5
Т8	Non-CP	θ(O2-C1-O3)=177.5
	СР	θ(O2-C1-O3)=177.4
Т9	Non-CP	θ(O2-C1-O3)=174.3
	СР	θ(O2-C1-O3)=174.6
CO_2	Non-CP	θ(O2-C1-O3)=180.0

Table S1 The bond angles (θ , in °) of CO₂ in the dimers (**D2**, **D3**, **D5**) and trimers (**T2**, **T3**, **T5**, **T6**, **T7**, **T8**, **T9**) at the M06-2X/aug-cc-pVDZ level of theory without (non-CP) and with the CP methods, and the corresponding parameters of CO₂.

	Method	R	V
D1	Non-CP	<i>R</i> _{01-H1} =0.969	v _{O1-H1} =3770
	СР	$R_{\rm O1-H1} = 0.969$	v _{O1-H1} =3775
D2	Non-CP	$R_{\rm O1-H1} = 0.962$	v _{O1-H1} =3866
		$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1403
	СР	$R_{\rm O1-H1} = 0.962$	v _{O1-H1} =3864
		$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1403
D3	Non-CP	$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1409
	СР	$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1409
D4	Non-CP	$R_{\rm O1-H1} = 0.979$	v _{O1-H1} =3527
	СР	$R_{\rm O1-H1} = 0.979$	v _{O1-H1} =3511
D5	Non-CP	$R_{\rm C1-O2}=1.163$	v _{C1-O2} =1396
	СР	$R_{\rm C1-O2} = 1.163$	v _{C1-O2} =1397
DABCO	Non-CP	$R_{\rm C2-H3} = 1.098$	v _{C2-H3} =3131
		$R_{\rm C2-H4} = 1.098$	v _{C2-H4} =3131
		$R_{\rm C3-H5} = 1.098$	v _{C3-H5} =3131
		$R_{\rm C3-H6} = 1.098$	v _{C3-H6} =3131
		R _{C4-H7} =1.098	v _{C4-H7} =3131
CO_2	Non-CP	$R_{\rm C1-O2}=1.161$	v _{C1-O2} =1407
H_2O	Non-CP	$R_{\rm O1-H1} = 0.962$	v _{O1-H1} =3867

Table S2 The bond lengths (R, in Å) and stretching vibrational frequencies (v, in cm⁻¹) for the dimers **D1-D5** at the M06-2X/aug-cc-pVDZ level of theory without (non-CP) and with the CP methods, and the corresponding parameters for DABCO, H₂O and CO₂.

	Method	R	v
T1	Non-CP	R _{01-H1} =0.978	v _{01-H1} =3547
		$R_{\rm O1'-H1'}=0.978$	v _{O1'-H1'} =3547
	СР	$R_{\rm O1-H1} = 0.978$	v _{O1-H1} =3545
		$R_{\rm O1'-H1'}=0.978$	v _{O1'-H1'} =3545
T2	Non-CP	$R_{\rm O1-H1} = 0.978$	v _{O1-H1} =3521
		$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1397
	СР	$R_{\rm O1-H1}=0.978$	v _{O1-H1} =3535
		$R_{\rm C1-O2}=1.162$	v _{C1-O2} =1398
Т3	Non-CP	$R_{\rm C1-O2}=1.163$	v _{C1-O2} =1396
		$R_{C1'-O2'}=1.163$	v _{C1'-O2'} =1396
	СР	$R_{\rm C1-O2}=1.163$	v _{C1-O2} =1397
		$R_{C1'-O2'}=1.163$	v _{C1'-O2'} =1397
T4	Non-CP	$R_{\rm O1-H1}=0.997$	v _{O1-H1} =3138
		$R_{\rm O1'-H1'}=0.977$	v _{O1'-H1'} =3616
		$R_{\rm C3-H5}=1.096$	v _{C3-H5} =3140
		$R_{C4-H7}=1.096$	v _{C4-H7} =3152
	СР	$R_{\rm O1-H1}=0.996$	v _{O1-H1} =3139
		$R_{\rm O1'-H1} = 0.976$	v _{O1'-H1} =3630
		$R_{\rm C3-H5}=1.097$	v _{C3-H5} =3139
		$R_{\rm C4-H7} = 1.096$	<i>v</i> _{C4-H7} =3152
T5	Non-CP	$R_{\rm C1-O2} = 1.164$	v _{C1-O2} =1399
		$R_{C1'-O3'}=1.163$	$v_{C1'-O3'}=1404$
		$R_{\rm C3-H5} = 1.097$	<i>v</i> _{C3-H5} =3141
		$R_{\rm C4-H7} = 1.097$	v _{C4-H7} =3132
	СР	$R_{\rm C1-O2}=1.164$	v _{C1-O2} =1395
		$R_{C1'-O3'}=1.063$	$v_{C1'-O3'}=1405$
		$R_{\rm C3-H5}=1.097$	v _{C3-H5} =3139
		$R_{\rm C4-H7} = 1.097$	v _{C4-H7} =3130
T6	Non-CP	$R_{\rm O1-H1} = 0.985$	v _{O1-H1} =3379
		$R_{\rm C1-O3}=1.163$	v _{C1-O3} =1400
		$R_{\rm C3-H5} = 1.096$	v _{C3-H5} =3145
		$R_{\rm C4-H7} = 1.096$	v _{C4-H7} =3140
	СР	$R_{\rm O1-H1} = 0.985$	v _{O1-H1} =3392
		$R_{\rm C1-O3} = 1.163$	$v_{C1-O3} = 1401$
		$R_{C3-H5}=1.097$	v _{C3-H5} =3144
		$R_{C4-H7} = 1.097$	v _{C4-H7} =3141
T7	Non-CP	$R_{\rm O1-H1} = 0.963$	v _{O1-H1} =3865
		$R_{C1-O3}=1.165$	v _{C1-O3} =1395
	СР	$R_{\rm O1-H1} = 0.963$	v _{O1-H1} =3866
		$R_{\rm C1-O3} = 1.165$	v _{C1-O3} =1360

Table S3 The bond lengths (R, in Å) and stretching vibrational frequencies (v, in cm⁻¹) for the trimers **T1-T9** at the M06-2X/aug-cc-pVDZ level of theory without (non-CP) and with the CP methods.

T8	Non-CP	$R_{\rm O1-H1} = 0.981$	v _{O1-H1} =3447	
		$R_{\rm C1-O2}=1.161$	v _{C1-O2} =1401	
		$R_{\rm C2-H3} = 1.097$	v _{C2-H3} =3135	
		$R_{\rm C3-H6} = 1.096$	v _{C3-H6} =3138	
	СР	$R_{\rm O1-H1}=0.982$	v _{O1-H1} =3463	
		$R_{\rm C1-O2} = 1.161$	v _{C1-O2} =1401	
		$R_{\rm C2-H3} = 1.098$	<i>v</i> _{C2-H3} =3137	
		$R_{\rm C3-H6} = 1.097$	v _{C3-H6} =3138	
Т9	Non-CP	$R_{\rm O1-H1} = 0.966$	v _{O1-H1} =3827	
		$R_{\rm C1-O3}=1.166$	v _{C1-O3} =1392	
		$R_{\rm C2-H4} = 1.096$	v _{C2-H4} =3137	
		$R_{C4-H8} = 1.096$	v _{C4-H8} =3141	
	СР	$R_{\rm O1-H1}=0.966$	v _{O1-H1} =3830	
		$R_{\rm C1-O3} = 1.166$	v _{C1-O3} =1393	
		R _{C2-H4} =1.097	<i>v</i> _{C2-H4} =3136	
		$R_{C4-H8} = 1.096$	v _{C4-H8} =3139	

	$d_{ m i}$	$d_{ m r}$	Δd_1	
D1	$d_{i(O1'\cdots H1)}=1.939$	$d_{\rm r(O1', H1)}$ =2.60	0.661	
D2	$d_{i(O1\cdots C1)}=2.667$	$d_{\rm r(O1, C1)}=3.10$	0.433	
D3	$d_{i(O2\cdots C1')}=2.885$	$d_{\rm r(O2, C1')}=3.10$	0.215	
D4	$d_{i(H1\cdots N1)}=1.883$	$d_{\rm r(H1, N1)}=2.70$	0.817	
D5	$d_{i(C1\cdots N1)}=2.671$	$d_{\rm r(C1, N1)}=3.20$	0.529	
a	$\Delta d_1 =$	d_{r}	-	d_{i} .

Table S4 The difference $(\Delta d_1, \text{ in } \text{\AA})$ between the intermolecular distance $(d_i, \text{ in } \text{\AA})$ in the dimer and the sum of the van der Waals radii $(d_r, \text{ in } \text{\AA})$ involved in the intermolecular interaction.^{*a*}

1 5	("				
	d_{i}	$d_{ m r}$	$\Delta d_2{}^a$	$B_d{}^b$	
T1	$d_{i(H1N1)}=1.892$	$d_{\rm r(H1, N1)}=2.70$	0.808	0.989	
	$d_{i(H1' \cdots N2)} = 1.892$	$d_{\rm r(H1', N2)}=2.70$	0.808	0.989	
T2	$d_{i(H1N1)} = 1.890$	$d_{\rm r(H1, N1)}=2.70$	0.810	0.991	
	$d_{i(C1N2)}=2.677$	$d_{\rm r(C1, N2)}=3.20$	0.523	0.989	
Т3	$d_{i(C1N1)} = 2.676$	$d_{\rm r(C1, N1)}=3.20$	0.524	0.991	
	$d_{i(C1' \cdots N2)} = 2.676$	$d_{\rm r(C1', N2)}=3.20$	0.524	0.991	
T4	$d_{i(H1N1)} = 1.744$	$d_{\rm r(H1, N1)}=2.70$	0.956	1.170	
	$d_{i(H1'\cdots O1)}=1.834$	$d_{\rm r(H1', O1)}=2.60$	0.766	1.159	
Т5	$d_{i(C1N1)}=2.648$	$d_{r(C1, N1)}=3.20$	0.552	1.043	
	$d_{i(C1'\cdots O2)}=2.772$	$d_{\rm r(C1', O2)}=3.10$	0.328	1.526	
T6	$d_{i(H1N1)} = 1.827$	$d_{\rm r(H1, N1)}=2.70$	0.873	1.069	
	$d_{i(C1\cdots O1)}=2.613$	$d_{\rm r(C1, O1)}=3.10$	0.487	1.125	
Т7	$d_{i(C1\cdots N1)}=2.711$	$d_{r(C1, N1)}=3.20$	0.489	0.924	
Т8	$d_{i(H1N1)} = 1.850$	$d_{\rm r(H1, N1)}=2.70$	0.850	1.040	
	$d_{i(O1\cdots C1)}=2.789$	$d_{\rm r(O1, C1)}=3.10$	0.311	0.718	

Table S5 The difference (Δd_2 , in Å) between the intermolecular distance (d_i , in Å) in the trimer and the sum of the van der Waals radii (d_r , in Å) involved in the intermolecular interaction, and the cooperativity factor (B_d).

^{*a*} $\Delta d_2 = d_r - d_i$.

^b $B_d = \Delta d_2 / \Delta d_1$. Note that the intermolecular distance in the trimer has correspondence with that in the dimer.

	Geometry	$\Delta E_{ m int}$	$\Delta E_{ m sum}$
T1	~ ¥	-8.66	17.32
		-8.66	-17.52
T2	→	-8.77	-14 77
	} ↓	-6.00	-14.//
Τ3	: 🙀	-5.98	-11 96
	¥₹ :	-5.98	11.50
T4	↓ ↓	-8.99	
	¥,	-3.14	-17.13
	* • * €	-5.00	
Τ5	\$	-6.06	
	₩	-1.01	-8.28
	••••	-1.21	

Table S6 The geometries and interaction energies (ΔE_{int} , in kcal/mol) of the ingredients in trimers **T1-T8** at the M06-2X/aug-cc-pVDZ level of theory without the CP methods, and the sum of the interaction energies (ΔE_{sum} , in kcal/mol) of the ingredients.

Fig. S1 The optimized geometries of the monomers (a) DABCO; (b) H₂O; (c) CO₂; and the dimers (d) **D1**; (e) **D2**; (f) **D3**; (g) **D4**; (h) **D5**; and the trimers (i) **T1**; (j) **T2**; (k) **T3**; (l) **T4**; (m) **T5**; (n) **T6**; (o) **T7**; (p) **T8**; (q) **T9** and the intermolecular distances (Å) for these complexes at the M06-2X/aug-cc-pVDZ level of theory with CP optimization.