Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information for:

Lewis acid induced spectral changes of sterically hindered and unhindered *meso-*tetra(aryl)porphyrins: Fluorescence emission spectra

Aida G. Mojarrad and Saeed Zakavi*

Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran. E-mail: zakavi@iasbs.ac.ir, szakavi@gmail.com.

Contents:

S1: ¹H NMR, ¹³C NMR and UV-Vis spectral data of *meso*-tetra(aryl)porphyrins.

S2: (a-f) UV-Vis spectra of *meso*-tetra(aryl)porphyrins and their molecular complexes with DDQ, TCNE and BF₃, (a'-f') The expanded region of Q-bands in UV-Vis spectra.

S3: ¹H NMR, ¹³C NMR, ¹¹B NMR, ¹⁹F NMR and UV-Vis spectral data of 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with BF₃.

S4: ¹H NMR, ¹³C NMR, ¹¹B NMR and ¹⁹F NMR spectra of BF₃ molecular complexes.

S5: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with DDQ.

S6: ¹H NMR and ¹³C NMR spectra of DDQ molecular complexes.

S7: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with TCNE.

S8: ¹H NMR and ¹³C NMR spectra of TCNE molecular complexes.

S1: ¹H NMR, ¹³C NMR and UV-Vis spectral data of *meso*-tetra(aryl)porphyrins:

H₂**TPP**. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.77 (2H, br, s, NH), 7.77-7.84 (8H_m and 4Hp, m), 8.26-8.27 (8H_o, d), 8.90 (8H_β, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 120.18 (C_{*meso*}), 142.20 (C₁), 134.60 (C₂, C₆), 126.73 (C₃, C₅), 127.75 (C₄), 131.5 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 417 (5.79), 513 (4.58), 548 (4.38), 590 (4.30), 647 (4.29).

H₂**T**(4-OCH₃)**PP**. ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.72 (2H, br, s, NH), 7.29-7.32 (8H_m, d), 8.15-8.17 (8H_o, d), 8.89 (8H_β, s), 4.13 (12H_{Me}, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 119.75 (C_{*meso*}), 134.67 (C₁), 135.62 (C₂, C₆), 112.20 (C₃, C₅), 159.39 (C₄), 131.34 (C_β), 55.61 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 421 (5.61), 517 (4.32), 555 (4.22), 593 (4.06), 651 (4.11).

H₂**T**(4-CH₃)**PP**. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.76 (2H, br, s, NH), 7.55-7.58 (8H_m, d), 8.09-8.12 (8H_o, d), 8.86 (8H_β, s), 2.65 (12H_{Me}, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 120.47 (C_{*meso*}), 139.73 (C₁), 134.92 (C₂, C₆), 127.81 (C₃, C₅), 137.71 (C₄), 131.37 (C_β), 21.57 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 418 (5.89), 516 (4.54), 551 (4.34), 590 (4.18), 647 (4.20).

H₂**T**(4-CI)**PP**. ¹H NMR (400 MHz, CDCI₃, TMS), δ/ppm: -2.83 (2H, br, s, NH), 7.77-7.79 (8H_m, d), 8.15-8.17 (8H_o, d), 8.87 (8H_β, s); ¹³C NMR (400 MHz, CDCI₃, TMS), δ/ppm: 119.01 (C_{meso}), 140.37 (C₁), 135.52 (C₂, C₆), 127.07 (C₃, C₅), 134.41 (C₄), 131.64 (C_β); UV-vis in CH₂CI₂, λ_{max} /nm (logε): 418 (5.79), 513 (4.52), 547 (4.25), 590 (4.16), 647 (4.10).

H₂**T**(2-CH₃)**PP**. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.59 (2H, br, s, NH), 7.54-7.74 (8H_m and 4H_p, m, *meta* and *para* position relative to C atom attached to the *meso* position), 7.99-8.11 (4H_o, m, *ortho* position relative to C atom attached to the *meso* position), 8.70 (8H_β, s), 2.01-2.11 (12H_{Me}, m);); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 118.82 (C_{*meso*}), 139.54 (C₁), 139.63 (C₂), 128.38 (C₃), 129.22 (C₄), 124.21 (C₅), 133.90 (C₆), 141.48 (C_a), 129.22 (C_β), 21.37 (C_{Me}); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (6.04), 512 (4.74), 545 (4.34), 589 (4.34), 645 (4.25).

H₂**T**(2-CI)**PP.** ¹H NMR (400MHz, CDCl₃, TMS), δ/ppm: -2.62 (2H, br, s, NH), 7.66-7.87 (8H_m and 4H_p, m), 8.10-8.26 (4H_o, m), 8.72 (8H_β, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 116.76 (C_{*meso*}), 137.10 (C₁), 136.94 (C₂), 129.01 (C₃), 129.93 (C₄), 125.32 (C₅), 135.52 (C₆), 140.50 (C_α), 135.39 (C_β); UV-vis in CH₂Cl₂, λ_{max} /nm (logε): 416 (5.64), 512 (4.47), 543 (4.07), 587 (4.15), 643 (3.96).

S2: (a-f) UV-Vis spectra of *meso*-tetra(aryl)porphyrins and their molecular complexes with DDQ, TCNE and BF₃, (a'-f') The expanded region of Q-bands in UV-Vis spectra.

S3: ¹H NMR,¹³C NMR, ¹¹B NMR, ¹⁹F NMR and UV-Vis spectral data of 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with BF₃.

H₂**TPP(BF**₃)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.87 (2H, br, s, NH), 8.83 (8H_β, s), 8.65-8.67 (8H_o, m), 8.02-8.10 (8H_m and 4H_p, m); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 146.03 (C_α), 129.77 (C_β), 123.43 (C_{meso}), 139.35 (C₁), 138.73 (C₂), 128.60 (C₃), 130.55 (C₄). ¹¹B NMR (400 MHz, CDCl₃, BF₃.OEt₂), δ/ppm: -6.40, (The ¹¹B signal of the free BF₃.OEt₂ was observed at 0.14 ppm); ¹⁹F NMR (400 MHz, CDCl₃, CFCl₃), δ/ppm: -155.52, (The ¹⁹F signal of the free BF₃.OEt₂ was observed at -152.85 ppm); UV-vis in CH₂Cl₂, λ_{max}/nm (log ε): 437 (5.64), 605 (4.03), 654 (4.67).

H₂**T**(4-OCH₃)**PP(BF**₃)₂. ¹H NMR (400 MHz, CDCI₃, TMS), δ/ppm: -2.37 (2H, br, s, NH), 8.68 (8H_β, s), 8.59-8.60 (8H_o, br), 7.57-7.61 (8H_m, m), 4.06-4.22 (12 H_{Me}, m); ¹³C NMR spectra of H₂T(4-OCH₃)PP(BF₃)₂ was not obtained due to the low solubility of the adduct in CDCI₃ at the concentration needed for ¹³C NMR study; ¹¹B NMR (400 MHz, CDCI₃, BF₃.OEt₂), δ/ppm: -5.95; ¹⁹F NMR (400 MHz, CDCI₃, CFCI₃), δ/ppm: -155.39; UV-vis in CH₂CI₂, λ_{max} /nm (log ϵ): 451 (4.73), 690 (4.08).

H₂**T**(4-CH₃)**PP**(**BF**₃)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.69 (2H, br, s, NH), 8.77 (8H_β, s), 8.53, 8.55 (8H_o, d), 7.86, 7.88 (8H_m, d), 2.82 (12 H_{Me}, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 146.10 (C_a), 129.48 (C_β), 123.28 (C_{meso}), 136.96 (C₁), 138.80 (C₂), 129.44 (C₃), 141.07 (C₄), 21.70 (C_{Me}); ¹¹B NMR (400 MHz, CDCl₃, BF₃.OEt₂), δ/ppm: -6.30; ¹⁹F NMR (400 MHz, CDCl₃, CFCl₃), δ/ppm: -155.73, -155.68; UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 441 (5.44), 668 (4.73).

H₂**T**(4-CI)**PP**(**BF**₃)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -2.81 (2H, br, s, NH), 8.81 (8H_β, s), 8.56, 8.58 (8H_o, d), 8.07, 8.09 (8H_m, d); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 146.03 (C_α), 128.86 (C_β), 122.42 (C_{meso}), 138.10 (C₁), 139.31 (C₂), 129.11 (C₃), 137.60 (C₄); ¹¹B NMR (400 MHz, CDCl₃, BF₃.OEt₂), δ/ppm: -6.33; ¹⁹F NMR (400 MHz, CDCl₃, CFCl₃), δ/ppm: -155.14; UV-vis in CH₂Cl₂, λ_{max} /nm (log ϵ): 440 (5.99), 600 (4.52), 658 (5.29).

H₂**T**(2-CH₃)**PP(BF**₃)₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -3.24, -3.21, -3.17, -3.07 (2H, br, s, NH), 8.80-8.84 (8H_β, m), 8.30-8.37 (4H_o, m), 7.77-7.92 (8H_m, 8H_p, m), 2.18-2.24 (12H_{Me}, m); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 145.72, 145.89, 146.01, 146.07 (C_α), 130.44, 130.78 (C_β), 121.79, 121.90 (C_{meso}), 141.23, 141.36 (C₁), 141.56, 141.65 (C₂),

129.86, 129.91 (C₃), 130.05, 130.15 (C₄), 125.33 (C₅), 136.30 (C₆), 21.07-21.30, 29.43, 29.76, 30.23 (C_{Me}); ¹¹B NMR (400 MHz, CDCl₃, BF₃.OEt₂), δ /ppm: -6.28; ¹⁹F NMR (400 MHz, CDCl₃, CFCl₃), δ /ppm: -155.12, -149.70, -149.66, -148.39, -147.63, -147.57; UV-vis in CH₂Cl₂, λ_{max} /nm: 431 (5.87), 583 (4.18), 634 (4.50).

H₂**T**(2-CI)**PP(BF**₃)₂. ¹H NMR (400 MHz, CDCI₃, TMS), δ/ppm: -2.94 (2H, br, s, NH), 8.83 (8H_β, s), 8.20-8.41 (4H_o, m), 7.72-8.00 (8H_m and 4H_p, m); ¹³C NMR (400 MHz, CDCI₃, TMS), δ/ppm: 145.96 (C_α), 132.24 (C_β), 119.51 (C_{meso}), 137.87 (C₁), 137.13 (C₂), 129.10 (C3), 130.0 (C₄), 126.61 (C₅), 135.60 (C₆); ¹¹B NMR (400 MHz, CDCI₃, BF₃.OEt₂), δ/ppm: -5.94; ¹⁹F NMR (400 MHz, CDCI₃, CFCI₃), δ/ppm: -155.07; UV-vis in CH₂CI₂, λ_{max} /nm: 430 (5.79), 581 (4.15), 632 (4.47).

S6: ¹H NMR spectra of a) $H_2TPP(BF_3)_2$, b) $H_2T(4-OCH_3)PP(BF_3)_2$, c) $H_2T(4-CH_3)PP(BF_3)_2$, d) $H_2T(4-CI)PP(BF_3)_2$, e) $H_2T(2-CH_3)PP(BF_3)_2$ and f) $H_2T(2-CI)PP(BF_3)_2$; ¹³C NMR spectra of a₁) $H_2TPP(BF_3)_2$, b₁) $H_2T(4-CH_3)PP(BF_3)_2$, c₁) $H_2T(4-CI)PP(BF_3)_2$, d₁) $H_2T(2-CH_3)PP(BF_3)_2$ and e₁) $H_2T(2-CI)PP(BF_3)_2$; ¹¹B NMR spectra of a₂) $BF_3.OEt_2$ (The inset shows ¹¹B background signals of the NMR tube), b₂) $H_2TPP(BF_3)_2$, c₂) $H_2T(4-OCH_3)PP(BF_3)_2$, d₂) $H_2T(4-CI)PP(BF_3)_2$, e₂) $H_2T(4-CI)PP(BF_3)_2$, f₂) $H_2T(2-CI)PP(BF_3)_2$, and ¹⁹F NMR spectra of a₃) $BF_3.OEt_2$, b₃) $H_2TPP(BF_3)_2$, c₃) $H_2T(4-OCH_3)PP(BF_3)_2$, d₃) $H_2T(4-CH_3)PP(BF_3)_2$, e₃) $H_2T(4-CI)PP(BF_3)_2$, f₃) $H_2TPP(BF_3)_2$, c₃) $H_2T(4-OCH_3)PP(BF_3)_2$, d₃) $H_2T(4-CH_3)PP(BF_3)_2$, e₃) $H_2T(4-CI)PP(BF_3)_2$, f₃) $H_2T(2-CH_3)PP(BF_3)_2$, g₃) $H_2T(2-CI)PP(BF_3)_2$.

f2)

e3)

S7: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with DDQ.

H₂**TPP(DDQ)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.36 (2H, br, s, NH), 8.61 (8H_β, s), 8.68 (8H_o, d), 7.99 (8H_m and 4H_p, m); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 145.96 (C_α), 128.95 (C_β), 123.44 (C_{meso}), 139.89 (C₁⁻), 138.87 (C₂⁻), 128.73 (C₃⁻), 130.51 (C₄⁻). The DDQ molecules of H₂TPP(DDQ)₂, 171.81 (C₁), 172.07 (C₄), 143.33 (C₂, C₃), 135.39 (C₅), 87.99 (C₆), 165.43 (C₇), 112.23 (C₈); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 441 (4.78), 606 (3.69), 655 (4.23).

H₂**T**(4-OCH₃)**PP(DDQ)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.13 (2H, br, s, NH), 8.48 (8H_β, s), 8.59, 8.62 (8H_o, d), 7.50, 7.54 (8H_m, d), 4.15 (12 H_{Me}, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 146.36 (C_α), 128.53 (C_β), 123.01 (C_{meso}), 133.44 (C₁[']), 140.46 (C₂[']), 114.50 (C₃[']), 162.11 (C₄[']); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 454 (5.58), 690 (4.84).

 $H_2T(4-CH_3)PP(DDQ)_2$. ¹H NMR (400 MHz, CDCI₃, TMS), δ/ppm: -0.38 (2H, br, s, NH), 8.55 (8H_β, s), 8.55 (8H_o, d), 7.78, 7.81 (8H_m, d), 2.77 (12 H_{Me}, s); ¹³C NMR (400 MHz, CDCI₃,

TMS), δ /ppm: 146.05 (C_a), 128.68 (C_β), 121.82 (C_{meso}), 137.47 (C₁[']), 138.94 (C₂[']), 129.35 (C₃[']), 140.93 (C₄[']); UV-vis in CH₂Cl₂, λ_{max} /nm (log ϵ): 446 (5.65), 669 (4.85).

H₂**T(4-CI)PP(DDQ)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.29 (2H, br, s, NH), 8.59 (8H_β, s), 8.59 (8H_o, d), 7.98, 8.01 (8H_m, d); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 145.87 (C_α), 128.91 (C_β), 122.39 (C_{meso}), 137.87 (C₁[']), 139.66 (C₂[']), 129.11 (C₃[']), 137.12 (C₄[']); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 446 (5.46), 662 (4.95).

S4: ¹H NMR spectra of a) $H_2TPP(DDQ)_2$, b) $H_2T(4-OCH_3)PP(DDQ)_2$, c) $H_2T(4-CH_3)PP(DDQ)_2$ and d) $H_2T(4-CI)PP(DDQ)_2$; ¹³C NMR spectra of e) $H_2TPP(DDQ)_2$, f) $H_2T(4-OCH_3)PP(DDQ)_2$, g) $H_2T(4-CH_3)PP(DDQ)_2$ and h) $H_2T(4-CI)PP(DDQ)_2$.

S5: ¹H NMR, ¹³C NMR and UV-Vis spectral data of the 1:2 molecular complexes of *meso*-tetra(aryl)porphyrins with TCNE.

H₂**TPP(TCNE)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -1.26 (2H, br, s, NH), 8.81 (8H_β, s), 8.64, 8.67 (8H_o, d), 8.03, 8.07 (8H_m and 4H_p, m); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 145.84 (C_α), 129.98 (C_β), 123.95 (C_{meso}), 139.70 (C₁[']), 139.07 (C₂[']), 129 (C₃[']), 131.03 (C₄[']). The TCNE molecules of H₂TPP(TCNE)₂, 108.25 (C₁, C₂), 112.31 (C₃, C₄, C₅, C₆); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 439 (5.79), 605 (3.85), 655 (4.83).

H₂**T**(4-OCH₃)**PP(TCNE)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -0.92 (2H, br, s, NH), 8.68 (8H_β, s), 8.55, 8.59 (8H_o, d), 7.54, 7.58 (8H_m, d), 4.18 (12H_{Me}, s); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 146.30 (C_α), 129.45 (C_β), 123.33 (C_{meso}), 133.35 (C₁[']), 140.60 (C₂[']), 144.81 (C₃[']), 162.52 (C₄[']); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 454 (5.66), 691 (4.85).

H₂**T**(4-CH₃)**PP**(**TCNE**)₂. ¹H NMR (400 MHz, CDCI₃, TMS), δ/ppm: -1.20 (2H, br, s, NH), 8.76 (8H_β, s), 8.51, 8.54 (8H_o, d), 7.82, 7.85 (8H_m, d), 2.80 (12H_{Me}, s); ¹³C NMR (400 MHz, CDCI₃, TMS), δ/ppm: 145.96 (C_α), 129.69 (C_β), 123.83 (C_{meso}), 137.36 (C₁[']), 139.11 (C₂[']), 129.82 (C₃[']), 141.59 (C₄[']); UV-vis in CH₂CI₂, λ_{max} /nm (log ε): 445(5.69), 667(4.69).

H₂**T(4-CI)PP(TCNE)**₂. ¹H NMR (400 MHz, CDCl₃, TMS), δ/ppm: -1.16 (2H, br, s, NH), 8.81 (8H_β, s), 8.55, 8.58 (8H_o, d), 8.03, 8.06 (8H_m, d); ¹³C NMR (400 MHz, CDCl₃, TMS), δ/ppm: 145.89 (C_α), 130.01 (C_β), 122.95 (C_{meso}), 138.66 (C₁⁻), 139.81 (C₂⁻), 129.52 (C₃⁻), 138.01 (C₄⁻); UV-vis in CH₂Cl₂, λ_{max} /nm (log ε): 444 (5.42), 659 (4.57).

S8: ¹H NMR spectra of a) $H_2TPP(TCNE)_2$, b) $H_2T(4-OCH_3)PP(TCNE)_2$, c) $H_2T(4-CH_3)PP(TCNE)_2$ and d) $H_2T(4-CI)PP(TCNE)_2$; ¹³C NMR spectra of e) $H_2TPP(TCNE)_2$, f) $H_2T(4-OCH_3)PP(TCNE)_2$, g) $H_2T(4-CH_3)PP(TCNE)_2$ and h) $H_2T(4-CI)PP(TCNE)_2$.

