Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

NEW J CHEM

Supporting Information

Facile Synthesis of Hierarchical Ni₇S₆ and Co (II)-doped Ni₇S₆ Flower-structures for High-performance Supercapacitors

Daojun Zhang,^{a,b*} Xueying Fu,^a Xiaobei Zhang,^b Chengxiang Li,^a Hao Bian,^a Xinyu Zhang, ^a Zhi Cao,^a

Renchun Zhang ,^a Jingchao Zhang ^a

^a Henan Key Laboratory of New Optoelectronic Functional Materials, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, Henan, China

^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China

* Corresponding author. Tel.: +86 372 2900040.

E-mail: zhangdj0410@sohu.com

Fig.S1 The SEM images of Ni₇S₆ flowers obtained at different reaction temperature and fixed the reaction time of 12h: (a) 120 °C, (b) 140 °C, (c) 160 °C, (d) 180 °C.

Fig.S2 (a) SEM image of Ni_7S_6 , (b) the size distribution graph of (a).

Fig.S3 The size distribution graph of Fig.1d.

Fig.S4 Nitrogen adsorption-desorption isotherm and BJH pore size distribution plot (inset) of Co_{0.7}Ni_{6.3}S₆ flowers.

Fig.S5 (a) CV of Ni₇S₆ flowers electrodes at different scan rates of 5 mV s⁻¹ to 50 mV s⁻¹; (b) CV curves of $Co_{0.7}Ni_{6.3}S_6$. (c) Galvanostatic charge/discharge curves of Ni_7S_6 flowers electrode at different current densities (12 A g⁻¹ to 18 A g⁻¹). (d) GCD curves of $Co_{0.7}Ni_{6.3}S_6$ at the current density of 12-18 A g⁻¹.

Fig.S6 The coulombic efficiency of Ni₇S₆ and Co_{0.7}Ni_{6.3}S₆ flowers at different current density.

NEW J CHEM

Fig.S7 The characterize of Ni_7S_6 work electrode after 4000 cycling at 8 A g⁻¹, (a-b) SEM image of Ni_7S_6 work electrode observed on Ni foam after cycling test, (c-d) TEM image of Ni_7S_6 flowers scratched from Ni foam, (f) The HRTEM image of Ni_7S_6 after cycling test.

Fig.S8 (a) CV of AC electrode at different scan rates of 5 mV s^{-1} to 50 mV s^{-1} ; (b) galvanostatic charge/discharge

curves of AC electrode at different current densities (1 to 10 A g⁻¹).

NEW J CHEM

Fig.S9 Energy and power densities for the Ni_7S_6 //AC hybrid supercapacitor.