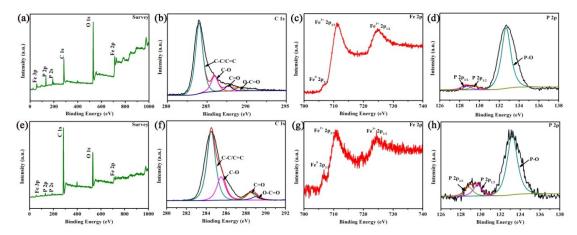
Supporting Information


Mesoporous FeP/RGO nanocomposites as anodes for sodium ion battery with enhanced specific capacity and long cycling life

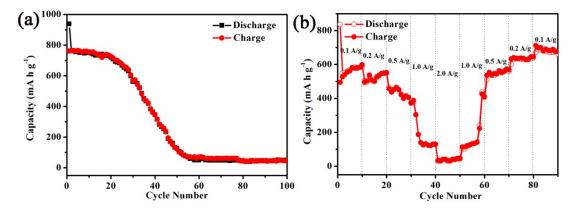
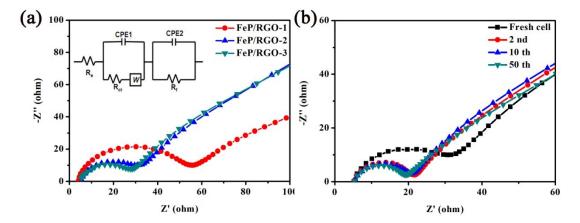
Qun Li,^{a,b}Jianjun Yuan,*a Qinglong Tan,^b Guixiang Wang,^b Shuai Feng*^b, Qing Liu^c and Qingzhao Wang^a

^a College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China; Email: <u>yij502@126.com</u>

^b College of Chemistry and Chemical Engineering, Taishan University, Tai'an 271021, P. R. China; E-mail: hffsh.1982@163.com

^c College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao, Shandong, 266590, PR China

Fig. S1. (a) XPS survey spectrum, (b-d) high-resolution XPS spectrum of C 1s, Fe 2p, and P 2p peaks of FeP/RGO-1 sample, (e) XPS survey spectrum, (f-h) high-resolution XPS spectrum of C 1s, Fe 2p, and P 2p peaks of FeP/RGO-3 sample

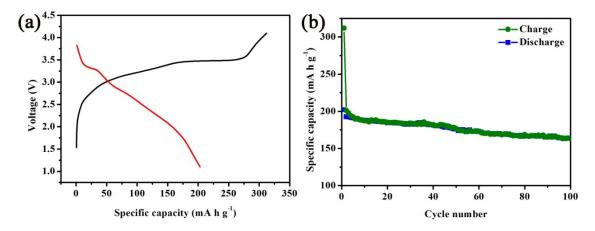

Fig. S2. (a) Cycling performance and (b) rate capability of the pure FeP electrode.

Fig. S3. (a) Nyquist plot of the FeP/RGO hybrid samples before cycling and (b) Nyquist plot of the FeP/RGO-2 hybrid sample after different cycles at full charged state.

Fig. S4. Ex-TEM images of the FeP/RGO-2 electrode after 100 cycles.

Fig. S5. (a) The discharge/charge profiles of $Na_3V_2(PO_4)_3$ // FeP/RGO full cell between 1.0 - 4.0 V. (b) The cycling performance of $Na_3V_2(PO_4)_3$ // FeP/RGO full cell at the current density of 0.1 A g⁻¹.