Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Synthesis and Investigation of Photophysical, Electrochemical and Theoretical properties of Phenazine-Amine based Cyan blue-Red Fluorescent Materials for Organic Electronics

Deepali N. Kanekar^a, Dr. Sajeev Chacko^b and Prof. Rajesh M. Kamble^{a*}

^aDepartment of Chemistry, University of Mumbai, Santacruz (E), Mumbai 400 098, India ^bDepartment of Physics, University of Mumbai, Santacruz (E), Mumbai 400 098, India e-mail: kamblerm@chem.mu.ac.in

Supporting Information

Sr.

No.

1.	Absorption spectra of compound 1 in neat solid film and various solvents and	3
	2–8 in various solvents	
2.	Emission spectra of compound 2-8 in various solvents	4
3.	Solvatochromic fluorescence of 1–8.	5
4.	Aggregation Induced Emission studies of dye 5 and 7	6
5.	Absorption spectra of 2 , 3 , 5 and 7 in THF/Water mixture (0–100%)	7
6.	Cyclic Voltammetry (CV) of compounds 1–8 in anhydrous dichloromethane	8
7.	MALDI-TOF Spectra of compounds 1–8	9–12
8.	FTIR Spectra of compounds 1–8	13–16
9.	¹ H and ¹³ C NMR Spectra of compounds 1–8	17–23
10.	Optimized Structures of compounds 1–8	24–31
11.	Frontier Molecular Orbitals of compound 1–8	32–36
12.	Cartesian Coordinates and Charges (Mulliken and Lowdin) of compounds 1-8	37–53
A)	Table S1. Cartesian Coordinates of Optimized Structure of compound 1	
B)	Table S2. Cartesian Coordinates of Optimized Structure of compound 2	

C)	Table S3. Cartesian Coordinates of Optimized Structure of compound 3	
D)	Table S4. Cartesian Coordinates of Optimized Structure of compound 4	
E)	Table S5. Cartesian Coordinates of Optimized Structure of compound 5	
F)	Table S6. Cartesian Coordinates of Optimized Structure of compound 6	
G)	Table S7. Cartesian Coordinates of Optimized Structure of compound 7	
H)	Table S8. Cartesian Coordinates of Optimized Structure of compound 8	
13.	Vertical electronic transition in implicit water	54–58
14.	Thermogram (TGA) curve of 1	59

1. Absorption spectra of compound 1–8 in various solvents.

Figure S1: Absorption spectra of compound 1 in various solvent and neat solid flim (a); Absorption spectra of compounds 2–8 in chloroform (b), dimethyl sulphoxide (DMSO) (c) and in neat solid film (d).

2. Emission spectra of compound 2–8 in various solvents.

Figure S2: Emission spectra of 2–8 in chloroform (a); DCM (b) and in DMSO (c).

3. Solvatochromic fluorescence of **1–8**.

Figure S3. Fluorescence image of 1-8 in toluene and dichloromethane (10^{-6} M) under 365 nm

UV illumination.

4. Aggregation Induced Emission studies of dye 5 and 7

Figure S4: Fluorescence spectra of 5 (a) and 7 (A), photograph of 5 (b) and 7 (B) in THF-water mixture with increasing water fractions (f_w) and 5 (c) and 7 (C) plots of PL intensity (I/I₀) versus f_w .

Figure S5: Absorption spectra in THF–water mixture in increase in water fraction by 10% (f_w) of compound 2 (a), 3 (b), 5 (c) and 7 (d).

Figure S6: Cyclic voltammetry of compounds 1–3 and 6–8.

7. MALDI-TOF spectra of compounds 1–8

Figure S7: MALDI-TOF mass of 1.

Figure S8: MALDI-TOF mass of 2.

Figure S9: MALDI-TOF mass of 3.

Figure S10: MALDI-TOF mass of 4.

Figure S11: MALDI-TOF mass of 5.

Figure S12: MALDI-TOF mass of 6.

Figure S13: MALDI-TOF mass of 7.

Figure S14: MALDI-TOF mass of 8.

8. FTIR spectra of compounds 1–8

Figure S15: FTIR spectra of 1.

Figure S16: FTIR spectra of 2.

Figure S17: FTIR spectra of 3.

Figure S18: FTIR spectra of 4.

Figure S19: FTIR spectra of 5.

Figure S20: FTIR spectra of 6.

Figure S21: FTIR spectra of 7.

Figure S22: FTIR spectra of 8.

9. ¹H and ¹³C NMR spectra of compounds 1–8

Figure S23: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 1.

Figure S24: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 2.

Figure S25: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 3.

Figure S26: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 4.

Figure S27: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 5.

Figure S28: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 6.

Figure S29: ¹H-NMR (above) and ¹³C-NMR (below) spectra in CDCl₃ of compound 8.

10. Optimized structures of compounds 1–8

Figure S30: Optimized structures of compound 1.

Figure S31: Optimized structures of compound 2.

Figure S32: Optimized structures of compound 3.

Figure S33: Optimized structures of compound 4.

Figure S34: Optimized structures of compound 5.

Figure S35: Optimized structures of compound 6.

Figure S36: Optimized structures of compound 7.

Figure S37: Optimized structures of compound 8.

11. Frontier molecular orbitals of compounds **1–8**.

Figure S38: Frontier molecular orbital of compound 1.

Figure S39: Frontier molecular orbital of compound 3.

Figure S40: Frontier molecular orbital of compound 6.

Figure S41: Frontier molecular orbital of compound 7.

Figure S42: Frontier molecular orbital of compound 8.

12. Cartesian coordinates and charges (Mulliken and Lowdin) of compounds **1–8**.

A.	Table S1: Cartesian coordinates of optimized structure of compound 1.
	Total Energy: – 6370.67 Hartrees

Atom	X	Y	Ζ	Mulliken	Lowdin
Atom				Charges	Charges
С	6.909965	9.741661	6.843187	-0.29744	-0.02758
С	8.009613	10.19348	6.116429	-0.25972	-0.04206
С	9.295776	9.796801	6.476712	-0.89809	-0.02603
С	9.489642	8.927235	7.558166	1.252826	-0.09421
С	8.374969	8.459055	8.268386	0.406206	0.001555
С	10.8394	8.403564	7.942559	-0.95445	0.024908
С	12.06862	9.241798	7.732019	0.727969	-0.07567
С	13.30783	8.55935	7.537871	0.23655	0.010206
С	14.48161	9.249197	7.405577	-0.34281	-0.00883
С	14.48858	10.66858	7.49086	0.070138	-0.03945
С	13.25507	11.35881	7.711502	0.186201	-0.04603
С	12.04966	10.61681	7.820163	-0.93283	0.006104
N	15.64584	11.34956	7.371147	0.165383	-0.04076
С	15.60493	12.6703	7.469982	-0.20357	-0.02107
С	14.36627	13.36325	7.698279	-0.23479	-0.02551
N	13.22375	12.70393	7.813392	0.185698	-0.03669
0	10.95261	7.293764	8.436978	-0.18438	-0.15856
С	16.84762	13.4302	7.344658	0.413713	-0.04931
С	16.83437	14.84103	7.449469	0.593089	-0.02888
С	15.56598	15.55062	7.685208	0.566473	-0.02997
С	14.35969	14.82195	7.806335	0.493173	-0.04866
С	15.5117	16.95365	7.796667	-0.64862	-0.06616
С	14.30681	17.5934	8.018438	-0.10031	-0.2269
С	13.11097	16.87986	8.139368	-0.40092	-0.06833
С	13.15106	15.50288	8.032094	-0.27221	0.008059
С	18.0609	12.7566	7.12016	-0.27975	0.00954
С	19.2528	13.44439	6.997897	-0.35969	-0.06814
С	19.23227	14.83813	7.102914	-0.13962	-0.22602
С	18.05613	15.5301	7.32311	-0.74364	-0.06644
Br	14.27268	19.5027	8.164448	-0.14907	0.277264
Br	20.87405	15.80999	6.938147	-0.14805	0.278185
Н	6.24023	8.519243	8.485676	0.178279	0.056844
Н	5.9105	10.05912	6.567623	0.163875	0.056017
Н	7.867285	10.85319	5.268127	0.1834	0.056779
Н	10.14387	10.14325	5.899121	0.18209	0.068216
Н	8.533097	7.768962	9.088189	0.21778	0.073486
Н	13.29079	7.477237	7.502629	0.229287	0.076466
Н	15.42575	8.743006	7.243427	0.187361	0.070924

Н	11.13449	11.16676	7.998881	0.220091	0.08265
Н	16.40713	17.55097	7.71114	0.076315	0.061288
Н	12.17656	17.39694	8.31355	0.244858	0.062704
Н	12.24388	14.92005	8.121713	0.178672	0.077377
Н	18.0409	11.67746	7.045119	0.194163	0.077874
Н	20.18263	12.91881	6.825195	0.244159	0.062877
Н	18.09457	16.60668	7.395744	0.070204	0.061281

B. Table S2: Cartesian coordinates of optimized structure of compound 2. Total Energy: -2258.74 Hartrees

Atom	X	у	Z	Mulliken	Lowdin
Atom				Charges	Charges
С	-11.8869	4.510302	8.058431	-0.31929	-0.03094
С	-11.9193	3.470675	8.989779	-0.27238	-0.04153
С	-11.4556	2.208326	8.639467	0.343712	-0.00038
С	-10.9265	1.975303	7.362309	1.286811	-0.09217
С	-10.8983	3.02318	6.433036	-0.90119	-0.02646
С	-10.4905	0.580343	7.024149	-0.78267	0.024548
С	-9.37887	0.350079	6.044488	0.585589	-0.08266
С	-9.36252	-0.89071	5.339677	0.166743	0.003747
С	-8.34769	-1.19734	4.473841	-0.26125	-0.01256
С	-7.27004	-0.28982	4.282702	0.025558	-0.043
С	-7.26419	0.942719	5.006397	0.131592	-0.05081
С	-8.34115	1.244309	5.878508	-0.93399	0.004055
Ν	-6.26765	-0.59522	3.432651	0.161072	-0.04908
С	-5.27843	0.277034	3.295994	-0.19563	-0.02011
С	-5.26542	1.51398	4.037621	-0.33051	-0.02507
Ν	-6.24913	1.823805	4.86809	0.184166	-0.04445
0	-11.038	-0.37515	7.551759	-0.18971	-0.16437
С	-4.18682	-0.02176	2.37772	0.160322	-0.06151
С	-3.11319	0.886606	2.212738	-0.10006	-0.02263
С	-3.08621	2.138844	2.991281	-0.13871	-0.02426
С	-4.14965	2.439834	3.875322	0.193535	-0.06031
С	-2.03332	3.060324	2.873895	-0.3012	-0.02413
С	-1.9994	4.241829	3.613726	-0.3183	-0.03481
С	-3.06729	4.52809	4.488212	-0.13664	-0.02631
С	-4.11621	3.642207	4.605303	-0.29175	0.01036
С	-4.19191	-1.21981	1.639103	-0.26997	0.012124
С	-3.18278	-1.52475	0.752509	-0.10753	-0.02693
С	-2.10778	-0.62965	0.574982	-0.24694	-0.03297
С	-2.08776	0.553297	1.314058	-0.31474	-0.02499
N	-0.90753	5.132775	3.499346	0.741517	-0.0945

Ν	-1.07617	-0.92321	-0.34425	0.736184	-0.09391
С	-1.12182	6.539255	3.54213	-0.15753	-0.05757
С	0.415948	4.631694	3.333581	-0.30509	-0.0578
С	-0.62736	-2.26359	-0.51728	-0.08301	-0.05801
С	-0.47179	0.117133	-1.10806	-0.29253	-0.05819
С	-0.26595	7.364685	4.283669	0.17399	-0.03573
С	-0.47208	8.740629	4.316052	-0.37325	-0.03718
С	-1.53958	9.314118	3.625726	-0.3809	-0.057
С	-2.39629	8.494312	2.892276	-0.36075	-0.03785
С	-2.18726	7.119141	2.840535	0.258464	-0.0389
С	1.276874	5.201305	2.387044	0.160195	-0.03538
С	2.574914	4.720055	2.239955	-0.32592	-0.03697
С	3.028855	3.657228	3.019693	-0.37841	-0.05611
С	2.171262	3.084142	3.958486	-0.24865	-0.03758
С	0.877738	3.57	4.123166	0.074531	-0.03523
С	0.920498	0.1765	-1.24683	0.05148	-0.03439
С	1.507041	1.181664	-2.01094	-0.29697	-0.03667
С	0.719093	2.148632	-2.63346	-0.41828	-0.05549
С	-0.66734	2.095862	-2.49046	-0.1795	-0.03764
С	-1.26235	1.084984	-1.7417	0.063346	-0.03514
С	-0.39594	-2.77214	-1.80209	0.171995	-0.03507
С	0.05109	-4.07952	-1.96897	-0.37903	-0.03699
С	0.259947	-4.90334	-0.86329	-0.38138	-0.05598
С	0.025455	-4.40095	0.416106	-0.35971	-0.03739
С	-0.40612	-3.08943	0.592652	0.196544	-0.03823
Н	-11.3738	5.083101	6.04813	0.180542	0.055932
Н	-12.2564	5.493224	8.328871	0.161234	0.054926
Н	-12.3122	3.645336	9.985021	0.176412	0.055826
Н	-11.4958	1.385757	9.343154	0.215138	0.072823
Н	-10.5197	2.850833	5.433148	0.185762	0.068471
Н	-10.1763	-1.58372	5.512764	0.224359	0.074652
Н	-8.33242	-2.12967	3.921702	0.176939	0.069101
Н	-8.29949	2.180429	6.420738	0.20433	0.081212
Н	-1.21242	2.865666	2.199295	-0.0682	0.074109
Н	-3.05459	5.439015	5.073225	0.180785	0.076187
Н	-4.93327	3.849417	5.283929	0.2321	0.075975
Н	-5.02602	-1.89616	1.772228	0.246338	0.076449
Н	-3.21669	-2.44497	0.18327	0.179987	0.07626
Н	-1.24922	1.219718	1.174648	-0.07789	0.073943
Н	0.558579	6.923656	4.830713	0.166663	0.074665
Н	0.198515	9.365251	4.895742	0.186012	0.055416
Н	-1.70087	10.38526	3.658343	0.158871	0.053022
Н	-3.22568	8.927069	2.343872	0.190962	0.055431
Н	-2.84875	6.489251	2.258078	0.151752	0.074427

,,					
Н	0.925917	6.022137	1.773384	0.170621	0.074713
Н	3.229141	5.171377	1.502318	0.188707	0.055363
Н	4.038015	3.281117	2.898654	0.162287	0.05314
Н	2.514126	2.262835	4.577973	0.191927	0.055777
Н	0.219872	3.12928	4.862484	0.177106	0.07547
Н	1.536908	-0.56787	-0.75737	0.16991	0.074877
Н	2.586478	1.214724	-2.10838	0.190513	0.055471
Н	1.178793	2.932995	-3.22336	0.159149	0.05324
Н	-1.29258	2.836607	-2.97652	0.192753	0.055742
Н	-2.34043	1.040419	-1.64465	0.173058	0.07545
Н	-0.56649	-2.1391	-2.66451	0.167233	0.074707
Н	0.22388	-4.45907	-2.96993	0.186369	0.055481
Н	0.601865	-5.92299	-0.99685	0.159132	0.053236
Н	0.19179	-5.02786	1.285102	0.192035	0.055759
Н	-0.57529	-2.70053	1.589547	0.15284	0.074695

 C. Table S3: Cartesian coordinates of optimized structure of compound 3. Total Energy: -2566.08 Hartrees

Atom	X	у	Z	Mulliken	Lowdin
				Charges	Charges
С	11.33942	8.799746	10.12792	-0.3112	-0.0314
С	10.40604	8.96996	9.107528	-0.25081	-0.04362
С	9.283237	8.147245	9.043148	-0.88996	-0.02628
С	9.075575	7.157509	10.01247	1.271575	-0.09201
С	10.00805	7.010034	11.0489	0.344795	-0.00067
С	7.846874	6.297285	10.04076	-0.76371	0.024454
С	7.172993	5.895863	8.763166	0.516933	-0.08364
С	5.780095	5.59104	8.816553	0.146243	0.002832
С	5.109123	5.158767	7.704468	-0.25756	-0.01298
С	5.800493	4.977254	6.475694	0.058371	-0.04335
С	7.201014	5.255952	6.419756	0.112867	-0.05131
С	7.865342	5.724902	7.581534	-0.92552	0.00381
Ν	5.139696	4.540529	5.382967	0.164124	-0.04981
С	5.828879	4.37287	4.263082	-0.16356	-0.01958
С	7.244468	4.646572	4.208907	-0.36831	-0.02464
Ν	7.898274	5.080395	5.275228	0.187508	-0.04516
0	7.393307	5.916774	11.10888	-0.1901	-0.16521
С	5.142266	3.900225	3.067596	0.134087	-0.0645
С	5.850105	3.701951	1.856635	-0.06801	-0.02281
С	7.300335	3.971319	1.803927	-0.13189	-0.02459
С	7.970201	4.44051	2.960081	0.147118	-0.06311
С	8.042595	3.7883	0.628074	-0.29575	-0.03485

С	9.416298	4.035025	0.572339	-0.03639	-0.03456
С	10.06615	4.508562	1.729451	-0.27812	-0.02646
С	9.348621	4.706119	2.890248	-0.24255	0.015101
С	3.763286	3.627814	3.105072	-0.22737	0.016887
С	3.083122	3.182327	1.992261	-0.28459	-0.02718
С	3.772077	2.980637	0.779023	-0.02021	-0.03267
С	5.145556	3.23503	0.737625	-0.29468	-0.03606
Ν	10.13541	3.838598	-0.6254	0.736991	-0.10322
Ν	3.091142	2.50232	-0.3582	0.724478	-0.10234
С	11.3412	4.576354	-0.86008	-0.33874	-0.05036
С	9.815955	2.778427	-1.52196	-0.01201	-0.05213
С	3.468322	2.893022	-1.67589	-0.02092	-0.05284
С	1.881375	1.749664	-0.20142	-0.3067	-0.05034
С	11.29234	5.994084	-1.0539	0.123123	-0.05629
С	12.52306	6.695956	-1.26951	0.368586	-0.06175
С	13.74256	5.972152	-1.3148	-0.12566	-0.02782
С	13.75143	4.607959	-1.15494	-0.3969	-0.03563
С	12.54781	3.910688	-0.91965	0.092306	-0.02153
С	9.917614	2.983651	-2.90442	0.026458	-0.03222
С	9.637526	1.948698	-3.79141	-0.43868	-0.03543
С	9.240046	0.698516	-3.3192	-0.44629	-0.05728
С	9.136055	0.491916	-1.94423	-0.10769	-0.03759
С	9.428178	1.517179	-1.04912	0.134588	-0.04148
С	1.91175	0.453685	0.406372	0.120596	-0.05668
С	0.676351	-0.25673	0.558368	0.349058	-0.06174
С	-0.52722	0.322068	0.079398	-0.1287	-0.02721
С	-0.51699	1.55409	-0.52765	-0.41553	-0.03569
С	0.690376	2.271678	-0.66117	0.091863	-0.02104
С	3.435199	1.954046	-2.71495	0.037081	-0.03091
С	3.774561	2.328468	-4.01159	-0.45719	-0.035
С	4.162984	3.637781	-4.29184	-0.44476	-0.05604
С	4.197244	4.57439	-3.25946	-0.11825	-0.03783
С	3.845839	4.211925	-1.96225	0.138677	-0.04075
С	10.07908	6.731736	-1.06379	-0.31819	-0.01422
С	10.08262	8.092995	-1.25651	-0.26689	-0.03501
С	11.29817	8.789083	-1.44734	-0.28966	-0.04155
С	12.48806	8.10345	-1.45672	-0.15843	-0.02871
С	3.110894	-0.16791	0.84465	-0.32264	-0.0147
С	3.088747	-1.41556	1.42164	-0.26661	-0.03415
С	1.867654	-2.10694	1.592983	-0.2925	-0.04086
С	0.691723	-1.54001	1.166817	-0.14664	-0.02833
Н	11.8623	7.684263	11.89517	0.175969	0.055641
Н	12.21786	9.434023	10.17117	0.161057	0.054758
Н	10.55036	9.743223	8.361521	0.179762	0.0559

Н	8.557231	8.293355	8.252934	0.187547	0.0686
Н	9.826784	6.258733	11.80794	0.214744	0.07271
Н	5.270044	5.708793	9.764455	0.224811	0.074364
Н	4.048545	4.937556	7.729332	0.172566	0.068881
Н	8.929105	5.91273	7.508826	0.199748	0.081018
Н	7.554155	3.449149	-0.27355	-0.19018	0.073113
Н	11.12942	4.710048	1.707258	0.204388	0.077511
Н	9.84539	5.060514	3.783923	0.263906	0.07604
Н	3.23745	3.78854	4.037072	0.271088	0.076587
Н	2.01945	2.989862	2.046412	0.205249	0.077755
Н	5.664762	3.054032	-0.19188	-0.14979	0.072863
Н	14.66711	6.51359	-1.48438	0.15253	0.060028
Н	14.6848	4.057978	-1.19399	0.18358	0.056793
Н	12.56397	2.836013	-0.78083	0.152113	0.076953
Н	10.21981	3.954852	-3.27758	0.167939	0.07495
Н	9.719906	2.125927	-4.85802	0.190915	0.05531
Н	9.016149	-0.10377	-4.01244	0.163808	0.052891
Н	8.839506	-0.47848	-1.56153	0.194032	0.055406
Н	9.35871	1.342467	0.017513	0.18874	0.074844
Н	-1.45497	-0.22805	0.194735	0.152958	0.060163
Н	-1.43811	1.991062	-0.89602	0.18288	0.056798
Н	0.689471	3.249556	-1.12836	0.152628	0.076709
Н	3.140325	0.933769	-2.50085	0.16919	0.075205
Н	3.745484	1.588553	-4.8037	0.191042	0.055475
Н	4.433742	3.925167	-5.30105	0.164785	0.053069
Н	4.485938	5.599287	-3.46513	0.193648	0.055424
Н	3.861347	4.948944	-1.16868	0.189478	0.074848
Н	9.143019	6.209268	-0.91776	0.07862	0.075903
Н	9.145759	8.638651	-1.26284	0.180485	0.055824
Н	11.28638	9.863467	-1.59212	0.166034	0.054751
Н	13.42413	8.62938	-1.61306	0.14409	0.05977
Н	4.0516	0.351773	0.719887	0.083579	0.076064
Н	4.014992	-1.87442	1.748586	0.180703	0.056101
Н	1.864436	-3.08757	2.055247	0.166772	0.054988
Н	-0.2479	-2.06957	1.284816	0.14496	0.059906

	X	у	Z	Mulliken	Lowdin
Atom				Charges	Charges
С	-8.7372	10.37594	-8.01076	-0.30151	-0.03226
С	-7.87606	10.93591	-8.9563	-0.28422	-0.04245
С	-6.55539	11.20799	-8.61965	0.338308	-0.00116
С	-6.06962	10.89764	-7.34183	1.296671	-0.09137
С	-6.93997	10.33683	-6.39838	-0.84921	-0.02661
С	-4.65025	11.26376	-7.01964	-0.81026	0.02433
С	-3.85887	10.44689	-6.04426	0.603774	-0.0851
С	-2.77806	11.08718	-5.36783	0.155637	0.001467
С	-1.97134	10.39018	-4.50917	-0.27928	-0.01399
С	-2.18089	9.000254	-4.29663	0.064596	-0.04405
С	-3.2473	8.345968	-4.98719	0.107488	-0.05232
С	-4.0805	9.097433	-5.85397	-0.93828	0.003343
Ν	-1.37614	8.312865	-3.45913	0.157493	-0.05231
С	-1.60299	7.016041	-3.30033	-0.16563	-0.01976
С	-2.67812	6.354073	-4.0013	-0.36038	-0.02476
Ν	-3.47278	7.02314	-4.82241	0.181522	-0.04761
0	-4.13439	12.23036	-7.55967	-0.19204	-0.16687
С	-0.75036	6.247552	-2.40455	0.120413	-0.0669
С	-0.96503	4.860879	-2.21258	-0.13502	-0.02113
С	-2.05782	4.18224	-2.93572	-0.17907	-0.02297
С	-2.89301	4.925748	-3.80378	0.142058	-0.06593
С	-2.30526	2.810221	-2.77851	-0.29652	-0.03054
С	-3.3361	2.158363	-3.45964	-0.15278	-0.03057
С	-4.15893	2.914665	-4.32192	-0.10653	-0.03259
С	-3.93537	4.264811	-4.47989	-0.24126	0.010398
С	0.303852	6.877084	-1.71548	-0.23676	0.012004
С	1.12749	6.18003	-0.86008	-0.08598	-0.03291
С	0.929149	4.796334	-0.65916	-0.109	-0.02908
С	-0.1121	4.164275	-1.3439	-0.31768	-0.0312
Ν	-3.54456	0.775697	-3.29887	0.824606	-0.09685
Ν	1.758108	4.074366	0.217692	0.820743	-0.09626
С	-4.85453	0.219906	-3.38921	-0.31526	-0.0751
С	-2.44735	-0.0986	-3.0335	-0.68204	-0.07709
С	3.127883	4.432459	0.389822	-0.38142	-0.07515
С	1.256336	2.938929	0.924443	-0.65861	-0.07778
С	-1.30104	-0.06965	-3.82808	0.1256	-0.01916
С	-0.22418	-0.91858	-3.57094	0.362557	-0.06947

D. Table S4: Cartesian coordinates of optimized structure of compound 4. Total Energy: -2716.96 Hartrees

С	-0.29499	-1.83211	-2.51622	-0.9474	-0.02829
С	-1.44845	-1.87726	-1.72375	-0.06117	-0.02467
С	-2.50521	-1.01637	-1.97471	0.074873	-0.0175
С	-5.93286	0.804926	-2.70724	0.160229	-0.02323
С	-7.20374	0.259337	-2.78921	-0.19529	-0.02672
С	-7.43025	-0.90203	-3.53835	-0.72828	-0.02893
С	-6.36218	-1.50185	-4.20894	0.16223	-0.06837
С	-5.08951	-0.93325	-4.13861	0.100331	-0.01834
С	3.947315	4.698212	-0.71832	0.158629	-0.0231
С	5.280503	5.035641	-0.5498	-0.20669	-0.02618
С	5.839908	5.095876	0.732693	-0.72907	-0.02856
С	5.037804	4.819581	1.842083	0.155285	-0.06831
С	3.690764	4.500753	1.664539	0.147962	-0.01787
С	0.091944	3.029699	1.687125	0.113174	-0.01835
С	-0.4037	1.924221	2.379232	0.366487	-0.06964
С	0.283074	0.708325	2.3303	-0.95834	-0.02762
С	1.459983	0.613721	1.577602	-0.08612	-0.02432
С	1.934082	1.712224	0.878223	0.089884	-0.01668
0	0.694707	-2.71226	-2.18307	-0.1033	-0.17399
С	1.890971	-2.70803	-2.94951	-0.31382	0.05548
0	-8.71498	-1.36628	-3.54624	-0.15654	-0.17715
С	-9.00791	-2.53673	-4.29606	-0.32475	0.056104
0	7.16413	5.425352	0.791845	-0.15613	-0.17668
С	7.786367	5.504484	2.066552	-0.32563	0.056277
0	-0.10572	-0.43011	2.976005	-0.10227	-0.17352
С	-1.28842	-0.39327	3.762487	-0.31251	0.055687
Н	2.529766	-3.47172	-2.50877	0.169486	0.053799
Н	1.696139	-2.96028	-3.9977	0.153049	0.04497
Н	2.396586	-1.73755	-2.89631	0.148625	0.044898
Н -	10.0729	-2.7184	-4.16086	0.178382	0.05379
Н	-8.79772	-2.39261	-5.3616	0.151567	0.045265
Н	-8.4438	-3.40053	-3.92709	0.150673	0.044833
Н	-1.40295	-1.39433	4.175089	0.16998	0.053891
Н	-1.20147	0.328338	4.582226	0.153361	0.045083
Н	-2.16631	-0.14952	3.154041	0.149067	0.045011
Н	8.824023	5.773085	1.875308	0.179053	0.053909
Н	7.322198	6.275451	2.691368	0.151688	0.045282
Н	7.751794	4.542115	2.589081	0.150557	0.044847
Н	-8.94007	9.666189	-5.98887	0.179884	0.055692
Н	-9.76987	10.1712	-8.27074	0.160237	0.054509
Н	-8.23853	11.16545	-9.95201	0.174775	0.055395
Н	-5.88167	11.66438	-9.33464	0.215147	0.072541
Н	-6.58704	10.11815	-5.39816	0.187096	0.068587
Н	-2.61288	12.14051	-5.55682	0.222121	0.074007

Н	-1.15579	10.86851	-3.97948	0.17418	0.068442
Н	-4.86928	8.568302	-6.37355	0.201101	0.080597
Н	-1.68915	2.221191	-2.11558	-0.05296	0.072193
Н	-4.95784	2.428303	-4.86688	0.190495	0.074643
Н	-4.55665	4.845195	-5.14954	0.23454	0.075283
Н	0.445928	7.939544	-1.86442	0.24573	0.0758
Н	1.922264	6.691548	-0.33247	0.190985	0.074718
Н	-0.24565	3.104137	-1.18835	-0.07663	0.072111
Н	-1.24174	0.629656	-4.65372	0.174024	0.076928
Н	0.649737	-0.86339	-4.20616	0.215709	0.06077
Н	-1.48837	-2.58502	-0.90452	0.210701	0.069727
Н	-3.3899	-1.05297	-1.35006	0.180016	0.07544
Н	-5.76867	1.696119	-2.11322	0.162592	0.076126
Н	-8.03785	0.710365	-2.26509	0.210578	0.069431
Н	-6.50354	-2.39869	-4.79709	0.203403	0.059977
Н	-4.26811	-1.40112	-4.66811	0.17556	0.075361
Н	3.530019	4.641943	-1.71667	0.163276	0.076381
Н	5.914349	5.243005	-1.40365	0.211099	0.069729
Н	5.438885	4.858807	2.845959	0.20313	0.059971
Н	3.074337	4.293608	2.531205	0.176976	0.075209
Н	-0.43987	3.972616	1.737344	0.172916	0.076834
Н	-1.31194	2.030931	2.957225	0.216039	0.060725
Н	1.979043	-0.33654	1.54274	0.211557	0.069863
Н	2.842121	1.62777	0.292892	0.180319	0.075615

 E. Table S5: Cartesian coordinates of optimized structure of compound 5. Total Energy: -2667.86 Hartrees

Atom	v	X7	7	Mulliken	Lowdin
Atom	Λ	У	L	Charges	Charges
С	14.02263	5.17257	5.825564	-0.30325	-0.0276
С	15.12085	4.332942	5.629634	-0.2753	-0.03955
С	14.94848	2.954263	5.61552	0.358782	0.001089
С	13.67094	2.397171	5.769063	1.271584	-0.09413
С	12.57395	3.24624	5.966554	-0.865	-0.02623
С	13.55316	0.903913	5.796021	-0.82272	0.024803
С	12.29514	0.232219	5.323971	0.58119	-0.07713
С	11.97997	-1.04476	5.878948	0.135381	0.008645
С	10.88652	-1.74939	5.454777	-0.28974	-0.01041
С	10.05698	-1.22891	4.423965	0.033276	-0.04078
С	10.38133	0.037625	3.843253	0.117275	-0.0473
C	11.50773	0.756536	4.321337	-0.87068	0.005271
Ν	8.984224	-1.92695	3.998767	0.172277	-0.04376

С	8.247535	-1.40673	3.027441	-0.16937	-0.02198
С	8.579081	-0.13656	2.437238	-0.24588	-0.0263
N	9.627918	0.557994	2.851241	0.185461	-0.03945
0	14.48175	0.219579	6.194635	-0.18553	-0.16
С	7.744513	0.403627	1.367267	0.153952	-0.05226
С	7.082753	-2.14342	2.546138	0.040725	-0.05248
С	6.615067	-0.31288	0.907054	-0.20616	-0.02467
С	5.827608	0.260944	-0.10542	-0.27524	-0.01485
С	6.145768	1.490492	-0.67396	-0.27466	-0.03804
С	7.285472	2.182301	-0.22223	-0.07307	-0.02325
С	8.058551	1.645108	0.78475	-0.27283	0.012706
С	6.751574	-3.38848	3.110838	-0.15388	0.015707
С	5.660441	-4.10888	2.673322	-0.00289	-0.01744
С	4.862397	-3.60365	1.630433	-0.26037	-0.0375
С	5.188879	-2.37857	1.055828	-0.34436	-0.02223
С	6.281525	-1.61836	1.504079	-0.14694	-0.02408
Ν	5.34454	2.021214	-1.721	0.802871	-0.08537
С	4.863614	1.133062	-2.7376	-0.45975	-0.06556
С	5.016837	3.385923	-1.76979	0.076124	-0.026
Ν	3.749751	-4.3535	1.160382	0.774212	-0.08407
С	2.538897	-3.73281	0.812921	-0.35631	-0.02587
С	3.899073	-5.76921	1.00004	-0.26747	-0.06525
С	3.498388	1.074175	-3.03538	0.040371	-0.03067
С	3.03779	0.209084	-4.02486	-0.25363	-0.03191
С	3.929867	-0.61259	-4.71277	-0.44926	-0.04415
С	5.290068	-0.55981	-4.40933	-0.19239	-0.03439
С	5.759178	0.312537	-3.4308	0.14493	-0.02763
С	4.824158	4.030168	-3.00758	0.033862	-0.02923
С	4.501192	5.375464	-3.062	-0.09213	0.014787
С	4.370003	6.097017	-1.87695	-0.63471	-0.07402
С	4.549509	5.482954	-0.63899	-0.17045	0.013721
С	4.865899	4.135981	-0.58686	0.040962	-0.03337
С	1.736436	-4.25808	-0.21865	0.002326	-0.03011
С	0.540143	-3.65139	-0.56298	-0.0455	0.013873
С	0.131541	-2.50638	0.11757	-0.46709	-0.07538
С	0.902371	-1.97043	1.148436	-0.02276	0.012156
С	2.094789	-2.58198	1.494645	-0.09243	-0.03132
С	2.969552	-6.64385	1.572476	0.145626	-0.03114
С	3.118517	-8.01897	1.415684	-0.3519	-0.03343
С	4.200795	-8.53389	0.702568	-0.35046	-0.0434
С	5.132517	-7.66214	0.140786	-0.3987	-0.03254
С	4.98225	-6.28485	0.281701	0.233857	-0.0285
N	4.037753	7.523018	-1.9331	-0.19566	0.155376
N	-1.12656	-1.8561	-0.25567	-0.21783	0.154901
0	3.859942	8.02742	-3.03843	-0.0078	-0.18976
0	-1.79495	-2.36933	-1.1493	0.000981	-0.19094
0	3.957214	8.135126	-0.87156	-0.00947	-0.19027
0	-1.44196	-0.83092	0.342653	0.000785	-0.19011

Н	11.90115	5.276545	6.172972	0.183997	0.056849
Н	14.1584	6.248136	5.844754	0.16429	0.056122
Н	16.11005	4.755529	5.495019	0.178596	0.056761
Н	15.79359	2.288894	5.487472	0.216911	0.073301
Н	11.5854	2.830551	6.117689	0.184891	0.068151
Н	12.63512	-1.441	6.64466	0.229434	0.076091
Н	10.62916	-2.71248	5.879362	0.179519	0.070214
Н	11.73326	1.706834	3.854372	0.20716	0.082329
Н	4.946301	-0.24786	-0.46803	-0.05187	0.07482
Н	7.555264	3.12989	-0.67137	0.184103	0.077692
Н	8.938421	2.166412	1.138035	0.240262	0.077969
Н	7.371934	-3.7658	3.913008	0.252013	0.078159
Н	5.414879	-5.06115	3.126403	0.200337	0.078142
Н	4.578136	-2.02223	0.239161	-0.01421	0.074447
Н	2.803927	1.705001	-2.49305	0.174361	0.07767
Н	1.977849	0.169741	-4.24851	0.205402	0.059863
Н	3.567938	-1.28766	-5.47941	0.166682	0.056341
Н	5.991631	-1.18972	-4.94445	0.19977	0.057501
Н	6.81684	0.36183	-3.20015	0.170293	0.076627
Н	4.938444	3.470643	-3.92652	0.193675	0.078538
Н	4.364037	5.878267	-4.00952	0.26219	0.081676
Н	4.423412	6.061687	0.265754	0.264406	0.081625
Н	4.988123	3.653797	0.373935	0.176406	0.077774
Н	2.06236	-5.13976	-0.75421	0.197171	0.078688
Н	-0.07362	-4.04317	-1.36249	0.26216	0.08155
Н	0.551246	-1.09364	1.675237	0.263451	0.081806
Н	2.686424	-2.17748	2.305113	0.205211	0.07885
Н	2.135706	-6.24387	2.137319	0.166062	0.076403
Н	2.393929	-8.68923	1.8639	0.196609	0.058209
Н	4.317901	-9.60509	0.587767	0.167653	0.056251
Н	5.975368	-8.05299	-0.41778	0.197493	0.057902
Н	5.702716	-5.60655	-0.15992	0.155906	0.076417

 F. Table S6: Cartesian coordinates of optimized structure of compound 6. Total Energy: -3052.74 Hartrees

Atom	v	**	7	Mulliken	Lowdin
Atom	Λ	У	L	Charges	Charges
С	12.58624	8.268526	0.96658	-0.29511	-0.02727
С	12.23878	9.311842	0.106195	-0.31454	-0.03916
С	10.9052	9.668556	-0.05145	0.434563	0.001823
С	9.898345	8.968597	0.628657	1.215028	-0.09438
С	10.25495	7.923273	1.490882	-0.95131	-0.02602
С	8.48373	9.43189	0.46193	-0.80367	0.024983
С	7.344556	8.461295	0.599313	0.628487	-0.07532
С	6.08528	8.978287	1.031044	0.271386	0.010616

С	4.983332	8.172798	1.120376	-0.23679	-0.00809
С	5.069849	6.802103	0.751743	-0.05813	-0.03921
С	6.321156	6.282563	0.292254	0.216573	-0.04592
С	7.453239	7.13731	0.233856	-0.97546	0.005742
Ν	3.982703	6.009017	0.829338	0.167557	-0.03856
С	4.107781	4.741636	0.463298	-0.22536	-0.02012
С	5.364007	4.221221	-0.00365	-0.23533	-0.02505
Ν	6.43863	4.991272	-0.08047	0.205731	-0.03578
С	5.466692	2.815989	-0.40024	0.022045	-0.04341
С	2.939417	3.863723	0.534773	-0.09402	-0.04396
С	4.333317	1.973211	-0.32741	-0.29292	-0.02833
С	4.484604	0.627709	-0.71435	-0.53223	0.00998
С	5.699333	0.13158	-1.15581	-0.74567	-0.04959
С	6.816692	0.977532	-1.22745	-0.06761	-0.02565
С	6.694652	2.301554	-0.85297	-0.18685	0.005084
С	1.708568	4.368287	0.98853	-0.29529	0.012948
С	0.590237	3.559377	1.056578	0.181577	0.004827
С	0.681152	2.217352	0.666997	-0.06412	-0.04557
С	1.891111	1.706148	0.220437	-0.3295	-0.01884
С	3.045429	2.507459	0.143907	-0.24868	-0.03299
Ν	5.779164	-1.25522	-1.52906	1.126621	-0.09664
Ν	-0.49654	1.396271	0.737131	1.06136	-0.09766
0	8.242695	10.60059	0.207411	-0.18183	-0.15815
С	5.723475	-1.58227	-2.91058	-0.19971	-0.0447
С	5.500799	-2.91126	-3.3138	-0.0991	-0.25845
S	5.119709	-4.15588	-2.09966	-0.43624	0.561539
С	6.132319	-3.557	-0.76417	-0.08899	-0.25839
С	6.304764	-2.17331	-0.58043	-0.19828	-0.04481
С	-0.66463	0.548757	1.864532	-0.36771	-0.04435
С	-1.92698	0.000222	2.154347	-0.1168	-0.25818
S	-3.35061	0.499892	1.210022	-0.49845	0.55998
С	-2.5705	0.712787	-0.37561	-0.1169	-0.25825
С	-1.25336	1.200594	-0.44925	-0.36898	-0.0443
С	6.666843	-4.46776	0.144637	0.405838	-0.06308
С	7.335218	-4.02458	1.28362	-0.25953	-0.05687
С	7.482058	-2.65755	1.492176	-0.22965	-0.03687
С	6.986308	-1.74187	0.565941	-0.0566	-0.04746
С	5.865096	-0.60736	-3.90775	-0.0584	-0.04764
С	5.796583	-0.94791	-5.25739	-0.24221	-0.03632
С	5.613524	-2.27074	-5.64509	-0.25467	-0.05679
С	5.476046	-3.25078	-4.66474	0.417176	-0.06304
С	-3.31072	0.4848	-1.53368	0.330288	-0.0633
С	-2.78133	0.790049	-2.78556	-0.19304	-0.05639
С	-1.49286	1.306522	-2.86732	-0.24494	-0.03558

С	-0.73117	1.496435	-1.71593	-0.26848	-0.04553
С	0.398038	0.244848	2.72663	-0.25173	-0.04592
С	0.209352	-0.58116	3.83301	-0.26977	-0.03578
С	-1.03474	-1.14682	4.089687	-0.18437	-0.05659
С	-2.09841	-0.8589	3.237518	0.323938	-0.06335
Н	11.86305	6.783144	2.346173	0.18437	0.056739
Н	13.62767	7.995824	1.095823	0.163922	0.056095
Н	13.00962	9.849136	-0.43446	0.178743	0.056931
Н	10.62145	10.49032	-0.69758	0.218122	0.073597
Н	9.491264	7.393182	2.046409	0.180739	0.068118
Н	6.028088	10.02992	1.282704	0.231597	0.076596
Н	4.02647	8.550618	1.460322	0.182375	0.071282
Н	8.38314	6.717134	-0.12786	0.201515	0.082608
Н	3.653175	-0.06238	-0.67628	-0.06589	0.080027
Н	7.765972	0.586062	-1.57384	0.171886	0.08193
Н	7.543561	2.970687	-0.8995	0.283341	0.077335
Н	1.658466	5.408311	1.282084	0.252328	0.077645
Н	-0.36021	3.945473	1.404633	0.171265	0.079321
Н	1.921986	0.665664	-0.07245	0.267501	0.081
Н	6.536428	-5.52861	-0.03679	0.176472	0.061092
Н	7.730147	-4.73991	1.994966	0.156059	0.054177
Н	7.994124	-2.29039	2.374189	0.178956	0.055331
Н	7.12091	-0.68462	0.746206	0.183333	0.070175
Н	6.016766	0.427024	-3.63308	0.184167	0.070199
Н	5.898751	-0.16818	-6.00341	0.178972	0.055605
Н	5.573231	-2.54098	-6.69342	0.15623	0.054247
Н	5.325823	-4.28777	-4.94286	0.176122	0.061088
Н	-4.31501	0.086096	-1.44531	0.171523	0.06091
Н	-3.37158	0.627859	-3.67942	0.158977	0.054184
Н	-1.06307	1.555791	-3.83064	0.175371	0.055737
Н	0.271349	1.890186	-1.80644	0.173583	0.069866
Н	1.376993	0.664935	2.543692	0.173265	0.06961
Н	1.049479	-0.7873	4.486139	0.174723	0.055624
Н	-1.18166	-1.80052	4.941009	0.159091	0.054142
Н	-3.07874	-1.28405	3.420605	0.171444	0.060914

G. Table S7: Cartesian coordinates of optimized structure of compound 7.

Total Energy: -2256.37 Hartrees

Atom	Х		7 Mulliker		Lowdin
Atom		У	L	Charges	Charges
С	-9.85283	4.6339	8.466412	-0.26459	-0.0279

С	-9.06455	4.752736	7.323602	-0.28863	-0.04219
С	-7.67538	4.739694	7.428974	-0.80114	-0.02588
С	-7.0633	4.62581	8.684158	1.274956	-0.09405
С	-7.86515	4.530982	9.830516	0.368426	0.001292
С	-5.5775	4.68616	8.867363	-0.87809	0.024745
С	-4.6587	4.169763	7.796877	0.63808	-0.07679
С	-3.35822	4.751739	7.704418	0.178364	0.009111
С	-2.44184	4.293855	6.797536	-0.2864	-0.00941
С	-2.76361	3.200567	5.947309	-0.02045	-0.04007
С	-4.05439	2.593235	6.053369	0.130057	-0.04677
С	-4.99306	3.106647	6.986001	-0.83057	0.005611
N	-1.85865	2.742537	5.058935	0.172365	-0.04171
С	-2.19881	1.712797	4.297073	-0.18485	-0.02076
С	-3.49414	1.097235	4.409501	-0.27476	-0.02531
N	-4.39095	1.542572	5.276085	0.192585	-0.03751
С	-3.83395	-0.03934	3.554474	0.171482	-0.04713
С	-1.23453	1.197801	3.327176	0.13281	-0.04814
С	-2.89655	-0.5305	2.615521	-0.12213	-0.02679
С	-3.26579	-1.63163	1.822574	-0.30724	-0.00783
С	-4.51917	-2.21847	1.933991	-0.11424	-0.02924
С	-5.44451	-1.71954	2.864564	-0.06646	-0.01226
С	-5.09606	-0.64941	3.663545	-0.2633	0.011642
С	0.034141	1.793693	3.212405	-0.20854	0.013279
С	0.96642	1.323017	2.310348	-0.01262	-0.01275
С	0.640163	0.238481	1.480079	-0.10844	-0.02762
С	-0.61273	-0.35281	1.576091	-0.31472	-0.00884
С	-1.57024	0.099034	2.501222	-0.07938	-0.02562
N	-4.86457	-3.31765	1.106598	0.733396	-0.02954
N	1.588643	-0.25643	0.549718	0.732523	-0.02872
0	-5.10078	5.150264	9.890273	-0.18622	-0.1592
С	-5.29594	-4.57238	1.552961	0.287114	-0.02219
С	-5.5549	-5.39481	0.429419	0.211764	-0.06376
С	-5.26973	-4.60158	-0.7476	0.226338	-0.064
С	-4.84534	-3.32894	-0.29385	0.143268	-0.02118
С	2.048888	-1.5775	0.47091	0.122803	-0.02098
С	2.999321	-1.66968	-0.57472	0.228133	-0.06379
С	3.117734	-0.34851	-1.15442	0.215269	-0.06346
С	2.237302	0.496933	-0.43653	0.28472	-0.02198
С	1.728017	-2.67931	1.265161	-0.40508	-0.05002
С	2.359531	-3.88711	0.983869	-0.35534	-0.03596
С	3.292497	-3.99943	-0.05841	-0.35276	-0.05946
С	3.619207	-2.89502	-0.83655	-0.28385	-0.02174
С	3.866697	0.175261	-2.21215	-0.20852	-0.02196
С	3.727818	1.518908	-2.54026	-0.32672	-0.06022

С	2.840258	2.33955	-1.82729	-0.51182	-0.03758
С	2.081934	1.842927	-0.77134	-0.41033	-0.05149
С	-5.43647	-5.05009	2.856821	-0.40623	-0.05139
С	-5.86177	-6.36481	3.022346	-0.51455	-0.03761
С	-6.13598	-7.18929	1.920176	-0.32465	-0.06057
С	-5.98064	-6.71206	0.623894	-0.20531	-0.0221
С	-5.35165	-4.85084	-2.12076	-0.28095	-0.02184
С	-5.01861	-3.83935	-3.01403	-0.36152	-0.05996
С	-4.61308	-2.57951	-2.54713	-0.35055	-0.03635
С	-4.52294	-2.30518	-1.18583	-0.4251	-0.05022
Н	-9.86238	4.432375	10.61117	0.177603	0.056698
Н -	10.93383	4.634685	8.381873	0.163513	0.055906
Н	-9.53004	4.857486	6.350227	0.184645	0.056706
Н	-7.06998	4.844871	6.537262	0.182172	0.068261
Н	-7.38299	4.467172	10.79842	0.218838	0.073412
Н	-3.11768	5.565884	8.376655	0.229541	0.07614
Н	-1.45754	4.737787	6.707686	0.181837	0.070635
Н	-5.95741	2.618614	7.049258	0.206102	0.082486
Н	-2.57199	-2.05887	1.11247	0.119442	0.076342
Н	-6.42711	-2.16899	2.938315	0.199456	0.077798
Н	-5.79708	-0.24822	4.383355	0.231592	0.077337
Н	0.268473	2.625028	3.863857	0.243223	0.077826
Н	1.950265	1.771129	2.247293	0.20186	0.077797
Н	-0.8364	-1.16912	0.904121	0.132204	0.076135
Н	1.019284	-2.60226	2.079972	0.174833	0.067653
Н	2.125222	-4.75751	1.586164	0.171367	0.054863
Н	3.764412	-4.95545	-0.25258	0.165405	0.053033
Н	4.34895	-2.98205	-1.63391	0.131666	0.060614
Н	4.54424	-0.4594	-2.77249	0.13268	0.060635
Н	4.304105	1.937668	-3.35693	0.162158	0.052855
Н	2.738217	3.382473	-2.1052	0.170521	0.054326
Н	1.391706	2.483008	-0.23658	0.1544	0.067361
Н	-5.2173	-4.42641	3.71438	0.155039	0.06754
Н	-5.97935	-6.75894	4.025435	0.170233	0.054331
Н	-6.46593	-8.20844	2.084196	0.162214	0.052795
Н	-6.18237	-7.35535	-0.22543	0.132676	0.060573
Н	-5.67491	-5.81976	-2.48485	0.131929	0.060566
Н	-5.07597	-4.02079	-4.08087	0.164878	0.052935
Н	-4.36583	-1.80083	-3.2597	0.171958	0.054683
Н	-4.21854	-1.32653	-0.83694	0.173193	0.06754

H. Table S8: Cartesian coordinates of optimized structure of compound 8. Total Energy: -1796.94 Hartrees

Atom	v	N.	7	Mulliken	Lowdin
Atom		У		Charges	Charges
С	-5.67797	-5.61998	5.862785	-0.28451	-0.03113
С	-5.24845	-6.21558	4.678661	-0.27803	-0.04376
С	-6.17835	-6.62742	3.726076	-0.83016	-0.02624
С	-7.54978	-6.46209	3.959386	1.302108	-0.09204
C	-7.9728	-5.88388	5.164489	0.345044	-0.00029
С	-8.59882	-6.95767	3.008222	-0.84237	0.024559
С	-8.33447	-6.97941	1.532433	0.631691	-0.08311
C	-9.0467	-7.93381	0.746045	0.177108	0.002962
С	-8.89911	-7.97842	-0.6139	-0.26326	-0.01294
С	-8.04993	-7.04838	-1.27386	0.002303	-0.04351
С	-7.35592	-6.06976	-0.49656	-0.08337	-0.05138
С	-7.50942	-6.06291	0.913503	-0.8407	0.003606
Ν	-7.90845	-7.09149	-2.61507	0.160322	-0.04995
С	-7.11426	-6.19657	-3.18656	-0.14596	-0.01992
С	-6.42518	-5.20058	-2.40355	-0.32051	-0.02478
Ν	-6.554	-5.156	-1.08628	0.17728	-0.04539
0	-9.67573	-7.34433	3.434714	-0.19031	-0.16475
С	-6.9359	-6.21942	-4.63148	0.007888	-0.0664
С	-6.10159	-5.27748	-5.27402	0.075983	-0.01787
С	-5.40725	-4.25025	-4.47463	0.055117	-0.01958
С	-5.57146	-4.22678	-3.07229	0.048037	-0.06535
С	-7.59521	-7.18942	-5.41132	-0.23965	0.012717
С	-7.44483	-7.24329	-6.77677	-0.15891	-0.03845
С	-6.61839	-6.30905	-7.44622	-0.14573	-0.03073
С	-5.97055	-5.34103	-6.67357	-0.28707	-0.05463
C	-4.56651	-3.29026	-5.06897	-0.33392	-0.0541
С	-3.90672	-2.30764	-4.32658	-0.15019	-0.03245
С	-4.09187	-2.3042	-2.92362	-0.19882	-0.03777
С	-4.89913	-3.24185	-2.32369	-0.17821	0.011025
N	-3.11825	-1.31347	-4.93004	0.271163	-0.15911
N	-6.43666	-6.40379	-8.8351	0.270366	-0.15743
С	-3.07934	-1.23486	-6.38822	-0.04248	-0.03114
С	-2.50605	0.111847	-6.82457	-0.53087	0.025973
0	-1.22252	0.347211	-6.26351	-0.11042	-0.22911
С	-1.28639	0.324196	-4.84312	-0.38063	0.024146
С	-1.80885	-1.01328	-4.33351	-0.12838	-0.0148
С	-5.46463	-5.52534	-9.48139	-0.05099	-0.0306
С	-5.1356	-6.04566	-10.8789	-0.52611	0.025967
0	-6.30127	-6.19684	-11.6764	-0.10933	-0.22896
С	-7.2133	-7.09887	-11.0627	-0.38597	0.024328
С	-7.62288	-6.61623	-9.67688	-0.118	-0.01436
Н	-7.37966	-4.99377	7.025952	0.175639	0.055771

Н	-4.95278	-5.29158	6.599062	0.161015	0.054847
Н	-4.18986	-6.36151	4.495871	0.181323	0.05586
Н	-5.83672	-7.10015	2.813694	0.184021	0.06854
Н	-9.03575	-5.78307	5.347204	0.216315	0.072863
Н	-9.70898	-8.62093	1.257713	0.222511	0.07445
Н	-9.42216	-8.70899	-1.21971	0.178146	0.068789
Н	-6.97911	-5.30187	1.471824	0.206423	0.080926
Н	-8.21971	-7.91183	-4.90221	0.225095	0.075756
Н	-7.93977	-8.02981	-7.33136	0.168863	0.060588
Н	-5.35958	-4.60677	-7.17285	0.027753	0.055548
Н	-4.41323	-3.32016	-6.13566	0.034841	0.055743
Н	-3.62656	-1.54022	-2.31428	0.170309	0.060779
Н	-5.04807	-3.22792	-1.25188	0.204595	0.075252
Н	-4.09554	-1.31968	-6.77944	0.14233	0.060957
Н	-2.47305	-2.04772	-6.82319	0.174493	0.061504
Н	-3.19454	0.917288	-6.5299	0.155406	0.057526
Н	-2.38146	0.134932	-7.90858	0.187155	0.05601
Н	-1.9335	1.138917	-4.48629	0.139907	0.056639
Н	-0.27067	0.496192	-4.48302	0.185291	0.056421
Н	-1.89137	-0.97365	-3.24836	0.117599	0.055123
Н	-1.08588	-1.80607	-4.5863	0.178531	0.066489
Н	-4.54372	-5.51409	-8.89451	0.142477	0.060755
Н	-5.84005	-4.49053	-9.55475	0.177209	0.06204
Н	-4.61227	-7.00962	-10.7979	0.155385	0.057549
Н	-4.48981	-5.33807	-11.4017	0.187111	0.056145
Н	-6.75829	-8.09776	-10.9916	0.140176	0.056711
Н	-8.08478	-7.15378	-11.7173	0.185629	0.056661
Н	-8.27859	-7.35698	-9.22198	0.11652	0.055214
Н	-8.19248	-5.67743	-9.77204	0.181223	0.066953

13. Main vertical electronic transition in implicit water Compound 1

1	406.7nm	0.7856,	(HOMO -> LUMO)	-96%
2	400.6nm	0.1436,	(HOMO-1 -> LUMO)	-96%
3	386.6nm	0.0041,	(HOMO-3 -> LUMO)	(54%),
4	353.9nm	0.0925,	(HOMO-2 -> LUMO)	(93%),
5	349.7nm	0.0041,	(HOMO-7 -> LUMO)	(24%),
6	323.1nm	0.7805,	(HOMO-1 -> LUMO+1)	-69%
7	321.5nm	0.0912,	(HOMO-4 -> LUMO)	(39%),
8	318.2nm	0.2402,	(HOMO -> LUMO+1)	(58%),
9	314.8nm	0.0620,	(HOMO-6 -> LUMO)	(70%),
10	313.1nm	0.0735,	(HOMO -> LUMO+1)	(24%),

1	572.9nm	0.7155,	(HOMO -> LUMO)	-99%
2	554.8nm	0.1515,	(HOMO-1 -> LUMO)	-99%
3	427.0nm	0.2613,	(HOMO -> LUMO+1)	-94%
4	412.9nm	0.3610.	(HOMO-1 -> LUMO+1)	-92%
5	396.1nm	0.0887.	(HOMO-2 -> LUMO)	-91%
6	384 2nm	0.0021	(HOMO-5 -> LUMO)	-81%
7	381 7nm	0.0090	(HOMO -> LUMO+2)	-94%
8	371 9nm	0.1685	$(HOMO-1 \rightarrow LUMO+2)$	-83%
9	360 7nm	0.2682	$(HOMO-3 \rightarrow IUMO)$	-79%
10	359 8nm	0.1907	(HOMO -> LUMO+3)	(77%)
10	222.000	,		(,,,,,),

1	557.4nm	0.7601,	(HOMO -> LUMO)	-99%
2	533.8nm	0.1433,	(HOMO-1 -> LUMO)	-98%
3	421.1nm	0.2602,	(HOMO -> LUMO+1)	-90%
4	405.4nm	0.2549,	(HOMO-1 -> LUMO+1)	(51%),
5	402.7nm	0.0813,	(HOMO-1 -> LUMO+1)	(35%),
6	393.0nm	0.2404,	(HOMO-3 -> LUMO)	(60%),
7	385.2nm	0.2777,	(HOMO -> LUMO+2)	(59%),
8	383.1nm	0.0569,	(HOMO -> LUMO+3)	(40%),
9	382.9nm	0.0382,	(HOMO-9 -> LUMO)	(52%),
10	374.4nm	0.0049,	(HOMO -> LUMO+4)	(63%),

1	622.3nm	0.6358,	(HOMO -> LUMO)	-98%
2	603.5nm	0.2311,	(HOMO-1 -> LUMO)	-98%
3	456.8nm	0.2484,	(HOMO -> LUMO+1)	-96%
4	441.2nm	0.2858,	(HOMO-1 -> LUMO+1)	-96%
5	404.5nm	0.0028,	(HOMO -> LUMO+2)	-86%
6	402.5nm	0.0226,	(HOMO-2 -> LUMO)	(62%),
7	392.5nm	0.1639,	(HOMO-1 -> LUMO+2)	(67%),
8	383.2nm	0.0064,	(HOMO-7 -> LUMO)	-89%
9	377.8nm	0.4053,	(HOMO-3 -> LUMO)	(52%),
10	376.0nm	0.1466,	(HOMO -> LUMO+3)	-85%

1	534.4nm	1.0575,	(HOMO -> LUMO)	-95%
2	518.5nm	0.2170,	(HOMO-1 -> LUMO)	(82%),
3	491.5nm	0.1814,	(HOMO -> LUMO+1)	(72%),
4	475.8nm	0.4704,	(HOMO -> LUMO+2)	(47%),
5	465.6nm	0.1212,	(HOMO -> LUMO+2)	(45%),
6	452.6nm	0.0020,	(HOMO-1 -> LUMO+2)	(75%),
7	394.4nm	0.0304,	(HOMO-2 -> LUMO)	-83%
8	386.6nm	0.0027,	(HOMO-5 -> LUMO)	(63%),
9	384.7nm	0.2152,	(HOMO -> LUMO+3)	-87%
10	376.8nm	0.2462,	(HOMO-1 -> LUMO+3)	-81%

1	605.2nm	0.0001,	(HOMO -> LUMO)	-96%
2	599.9nm	0.0001,	(HOMO-1 -> LUMO)	-96%
3	436.2nm	0.0001,	(HOMO-1 -> LUMO+1)	(81%),
4	429.8nm	0.0001,	(HOMO -> LUMO+1)	(80%),
5	403.8nm	0.0419,	(HOMO-4 -> LUMO)	(97%),
6	398.7nm	0.0002,	(HOMO-2 -> LUMO)	(95%),
7	397.1nm	0.0016,	(HOMO-3 -> LUMO)	(95%),
8	393.4nm	0.8393,	(HOMO-5 -> LUMO)	(94%),
9	392.5nm	0.0016,	(HOMO -> LUMO+2)	-86%
10	391.8nm	0.0006,	(HOMO-1 -> LUMO+2)	-83%

1	510.1nm	0.4202,	(HOMO -> LUMO)	-96%
2	503.2nm	0.0336,	(HOMO-1 -> LUMO)	-96%
3	425.8nm	0.0003,	(HOMO-3 -> LUMO)	-98%
4	425.3nm	0.0002,	(HOMO-2 -> LUMO)	-97%
5	394.8nm	0.0381,	(HOMO-4 -> LUMO)	-93%
6	386.8nm	0.0053,	(HOMO-7 -> LUMO)	(60%),
7	385.7nm	0.1848,	(HOMO -> LUMO+1)	(64%),
8	380.6nm	0.0492,	(HOMO-1 -> LUMO+1)	(39%),
9	374.6nm	0.8018,	(HOMO-5 -> LUMO)	(60%),
10	351.2nm	0.0563,	(HOMO-6 -> LUMO)	(79%),

1	501.6nm	0.8005,	(HOMO -> LUMO)	-98%
2	485.0nm	0.1170,	(HOMO-1 -> LUMO)	-97%
3	385.6nm	0.0578,	(HOMO -> LUMO+1)	(71%),
4	382.3nm	0.0225,	(HOMO-4 -> LUMO)	(56%),
5	380.4nm	0.2018,	(HOMO-2 -> LUMO)	(71%),
6	373.8nm	0.5124,	(HOMO-1 -> LUMO+1)	(94%),
7	344.3nm	0.0237,	(HOMO-6 -> LUMO)	(28%),
8	338.8nm	0.0101,	(HOMO -> LUMO+2)	(92%),
9	332.7nm	0.0642.	(HOMO-3 -> LUMO)	-70%
10	326.4nm	0.1775,	(HOMO-1 -> LUMO+2)	-88%

14. Thermogram (TGA) curve of 1.

Figure S43: Thermogram (TGA) curve of 1.