Electronic Supplementary information

Facile synthesis of SnO₂@carbon nanocomposite for lithium ion battery

Anuradha A Ambalkar, aRajendra P Panmand, b Ujjwala V Kawade, aYogesh Sethi, aSonali D Naik, aMilind V Kulkarni, aParag V Adhyapak, a* Bharat B Kalea*

S1: The rate performance at different current densities and Cycling performances

Figure. S1 The rate performance, at different current densities and Cycling performances of SnC-1, and SnC-3 between 0.01 and 3V for lithium ion batteries for 50 cycles.

The 50th discharge capacities of pristine SnC-0, SnC-1, SnC-2 and SnC-3 were 41, 135, 808 and 164 mAhg-1. This study, demonstrates SnC-2 shows better stability compared to other samples. Therefore further rate performance and cyclability study (200 cycles) carried out for pristine and SnC-2 sample.

S2: Columbic efficiency of SnC-0 and SnC-2 sample

Figure. S2 The columbic efficiency of the SnO2 and SnO2@C nanocomposites (SnC-2) electrodes for lithium ion batteries.

S3: Tap density of nanocomposites powder

As procedure given in report tapped density of a powder is the ratio of the mass of the powder to the volume occupied by the powder after it has been tapped for a defined period of time. ^{1, 2, 3}The tapped density of a powder represents its random dense packing. It is measured using eq.

Where, M = mass in grams, Vf = tapped volume in milliliters.⁴ The tap density of SnC-0, SnC-1, SnC-2 and SnC-3 are 1.225, 0.981, 0.668, and 0.386 g/mL.

S4: Press density of Anode

Press density of the electrode film is also measured via gravimetric method using following eq.

 $d = m / (A^* \rho)$

Where, d = film thickness, m = mass, ρ = density, and A = area covered. The density of SnC-0 SnC-1, SnC-2 and SnC-3 electrodes before roll press are 0.724, 0.25, 0.692 and 0.3944 g/cc which is increased 0.94, 0.36, 1.2454 and 0.743 g/cc after roll press respectively. Density of the electrode increases with the concentration of the citric acid. ^{5, 6, 7}

No	Current	Capacity mAhg ⁻¹	Rate performance	Reference
	density	(at initial Cycle)	capacity (mAhg-1) @ current density	
			(cycle)	
1.	250mAg-1	1946	1050@250 mAg-1 (130)	Co ₃ Sn ₂ /SnO ₂ on Cu foam ⁸
2.	100mAg-1	1020	474@1000mAg-1(50)	CuxO/SnO ₂ /ZnSnO ₃ ⁹
3.	100mAg-1	684	494@100mAg-1(200)	SnO ₂ @carbon for Na ion
				battery ¹⁰
4.	0.1A/g	2010	500@0.1 Ag-1(40)	SnO ₂ nanotube ¹¹
5.	0.2C	1267	674@0.2C (35)	Ni-doped SnO ₂ ¹²
6.	50mAg-1	2805	537@50mAg-1(50)	graphene-TiO ₂ -SnO ₂ ¹³
7.	0.1C	1580	404@0.1C(50)	TiN surface modified SnO ₂ ¹⁴
8.	500mAg-1	1700	500@500 mAg-1 (20)	Carbon-Coated SnO2 ¹⁵
9.	100mAg-1	964	420@100 mAg-1 (100)	SnO2@carbon composite
				nanofibers ¹⁶
10.	C/20	460	500@1C(20)	SnO2 / Mesoporous Carbon ¹⁷
8.	50 mAg-1	1850	119@50 mAg-1 (200)	Present work
				(SnO ₂)
9.	50 mAg-1	2581	725@50 mAg-1 (200)	present work
				(SnO ₂ @C)

Table S1. Comparison of the SnO2/C composites for their electrochemical performance

Notes and references

1. Zhang, Y.; Wang, Z.-B.; Nie, M.; Yu, F.-D.; Yun-Fei, X.; Liu, B.-S.; Xue, Y.; Zheng, L.-L.; Wu, J., A simple method for industrialization to enhance the tap density of LiNi0.5Co0.2Mn0.3O2 cathode material for high-specific volumetric energy lithium-ion batteries. *RSC Advances* **2016**, *6* (70), 65941-65949.

2. Abdullah, E. C.; Geldart, D., The use of bulk density measurements as flowability indicators. *Powder Technology* **1999**, *102* (2), 151-165.

3. Klavetter, K. C.; De Souza, J. P.; Heller, A.; Mullins, C. B., High tap density microparticles of selenium-doped germanium as a high efficiency, stable cycling lithium-ion battery anode material. *Journal of Materials Chemistry A* **2015**, *3* (11), 5829-5834.

4. <u>https://www.sciencedirect.com/topics/biochemistry-genetics-and-molecular-biology/tapped-</u> density.

5.

https://www.researchgate.net/post/What_is_the_importance_of_pressing_composite_anode_ or_cathode_films.

6. <u>https://www.researchgate.net/post/How_can_l_calculate_coating_density.</u>

7. Shim, J.; Striebel, K. A., Effect of electrode density on cycle performance and irreversible capacity loss for natural graphite anode in lithium-ion batteries. *Journal of power sources* **2003**, *119*, 934-937.

8. Zhang, D.; Bi, C.; Wu, Q.; Hou, G.; Zheng, G.; Wen, M.; Tang, Y., Co3Sn2/SnO2 nanocomposite loaded on Cu foam as high-performance three-dimensional anode for lithium-ion batteries. *New Journal of Chemistry* **2019**, *43* (3), 1238-1246.

9. Zhang, M.; Ma, J.; Zhang, Y.; Lu, L.; Chai, Y.; Yuan, R.; Yang, X., Ion exchange for synthesis of porous CuxO/SnO2/ZnSnO3 microboxes as a high-performance lithium-ion battery anode. *New Journal of Chemistry* **2018**, *42* (14), 12008-12012.

10. Sridhar, V.; Park, H., Hollow SnO2@carbon core–shell spheres stabilized on reduced graphene oxide for high-performance sodium-ion batteries. *New Journal of Chemistry* **2017**, *41* (2), 442-446.

11. Um, J. H.; Yu, S.-H.; Cho, Y.-H.; Sung, Y.-E., SnO2 nanotube arrays embedded in a carbon layer for high-performance lithium-ion battery applications. *New Journal of Chemistry* **2015**, *39* (4), 2541-2546.

12. Ye, X.; Zhang, W.; Liu, Q.; Wang, S.; Yang, Y.; Wei, H., One-step synthesis of Ni-doped SnO2 nanospheres with enhanced lithium ion storage performance. *New Journal of Chemistry* **2015**, *39* (1), 130-135.

13. Jiang, X.; Yang, X.; Zhu, Y.; Fan, K.; Zhao, P.; Li, C., Designed synthesis of graphene–TiO2–SnO2 ternary nanocomposites as lithium-ion anode materials. *New Journal of Chemistry* **2013**, *37* (11), 3671-3678.

14. Liu, M.; Li, X.; Ming, H.; Adkins, J.; Zhao, X.; Su, L.; Zhou, Q.; Zheng, J., TiN surface modified SnO2 as an efficient anode material for lithium ion batteries. *New Journal of Chemistry* **2013**, *37* (7), 2096-2102.

15. Moon, T.; Kim, C.; Hwang, S.-T.; Park, B., Electrochemical properties of disordered-carboncoated SnO2 nanoparticles for Li rechargeable batteries. *Electrochemical and solid-state letters* **2006**, *9* (9), A408-A411.

16. Yang, Z.; Du, G.; Guo, Z.; Yu, X.; Chen, Z.; Zhang, P.; Chen, G.; Liu, H., Easy preparation of SnO 2@ carbon composite nanofibers with improved lithium ion storage properties. *Journal of materials research* **2010**, *25* (8), 1516-1524.

17. Di Lupo, F.; Gerbaldi, C.; Meligrana, G.; Bodoardo, S.; Penazzi, N., *Novel SnO2/mesoporous carbon spheres composite anode for Li-ion batteries*. 2011; Vol. 6, p 3580-3593.