NJ-ART-07-2019-003875 (Revised)

Simultaneous formation of non-oxidovanadium(IV) and oxidovanadium(V) complexes incorporating phenol-based hydrazone ligands in aerobic condition

Nirmalendu Biswas, Sachinath Bera, Nayim Sepay, Amrita Pal, Tanmoy Halder, Sudipta Ray, Swarnali Acharyya, Anup Kumar Biswas, Michael G. B. Drew and Tapas Ghosh*

Electronic Supplementary Information

Fig. S1. Molecular structure of $\mathrm{H}_{2} \mathrm{~L}^{3}$ with ellipsoids at 30% probability. Hydrogen bonds are shown as dotted bonds.

Fig. S2. Electronic spectra of $\mathbf{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green, blue and sky deconvoluted).

Fig. S3. Electronic spectra of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green, blue and sky deconvoluted).

Fig. S4. Electronic spectra of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green, blue and sky deconvoluted).

Fig. S5. Electronic spectra of 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green and blue deconvoluted).

Fig. S6. Electronic spectra of 7 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green and blue deconvoluted).

Fig. S7. Electronic spectra of $\mathbf{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. (black experimental; red, green and blue deconvoluted).

Fig. S8. ${ }^{51}$ V NMR spectra of $\mathbf{5 - 8}$ complexes in CDCl_{3} solution at 298 K .

Fig. S9. Cyclic voltammogram of $\mathbf{1}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S10. Cyclic voltammogram of $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S11. Cyclic voltammogram of $\mathbf{4}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S12. Cyclic voltammogram of 6 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S13. Cyclic voltammogram of $\mathbf{7}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S14. Cyclic voltammogram of $\mathbf{8}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Fig. S15. X-band EPR spectra of complex 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 300 K (top) and at 77 K (bottom).

Fig. S16. X-band EPR spectra of complex $\mathbf{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 300 K (top) and at 77 K (bottom).

Fig. S17. X-band EPR spectra of complex 4 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at 300 K (top) and at 77 K (bottom).

SOMO

LUMO

5

8

Fig. S18. Schematic diagram of selected frontier orbitals of complexes 1-8 in their ground state geometries.

1

2

3

4

5

6

7

8

Fig. S19. DFT optimized structure of complexes 1-8.

Fig. S20. Cytotoxic activity of the $\mathrm{H}_{2} \mathrm{~L}^{1-4}$ ligands.

Fig. S21. Cytotoxic activity of $\left[\mathrm{V}^{\mathrm{IV}} \mathrm{O}(\mathrm{aa})_{2}\right]$.

Fig. S22. Fluorescence spectra of $\mathrm{EB}+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex $\mathbf{1}$.
The arrow shows that the intensity decreases with increasing concentration of complex 1 .
(Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex $\mathbf{1}$).

Fig. S23. Fluorescence spectra of $\mathrm{EB}+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex 3.
The arrow shows that the intensity decreases with increasing concentration of complex 1 .
(Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex $\mathbf{3}$).

Fig. S24. Fluorescence spectra of $\mathrm{EB}+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex 4 . The arrow shows that the intensity decreases with increasing concentration of complex 4 . (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex 4).

Fig. S25. Fluorescence spectra of $\mathrm{EB}+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex $\mathbf{5}$.
The arrow shows that the intensity decreases with increasing concentration of complex 5 .
(Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex 5).

Fig. S26. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex 6 .
The arrow shows that the intensity decreases with increasing concentration of complex 6 .
(Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex $\mathbf{6}$).

Fig. S27. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex 8 . The arrow shows that the intensity decreases with increasing concentration of complex 8 .
(Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) DNA complex caused by complex $\mathbf{8}$).

Fig. S28. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ ligand $\mathrm{H}_{2} \mathrm{~L}^{1}$. The arrow shows that the intensity decreases with increasing concentration of ligand $\mathrm{H}_{2} \mathrm{~L}^{1}$. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand $\mathrm{H}_{2} \mathrm{~L}^{1}$).

Fig. S29. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex $\mathrm{H}_{2} \mathrm{~L}^{2}$. The arrow shows that the intensity decreases with increasing concentration of ligand $\mathrm{H}_{2} \mathrm{~L}^{2}$ (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand $\mathrm{H}_{2} \mathrm{~L}^{2}$).

Fig. S30. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex $\mathrm{H}_{2} \mathrm{~L}^{3}$. The arrow shows that the intensity decreases with increasing concentration of ligand $\mathrm{H}_{2} \mathrm{~L}^{3}$ (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand $\mathrm{H}_{2} \mathrm{~L}^{3}$).

Fig. S31. Fluorescence spectra of EB $+10^{-4} \mathrm{M}$ DNA control $+(1-10) \times 10^{-5} \mathrm{M}$ complex $\mathrm{H}_{2} \mathrm{~L}^{4}$. The arrow shows that the intensity decreases with increasing concentration of ligand $\mathrm{H}_{2} \mathrm{~L}^{4}$ (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand $\mathrm{H}_{2} \mathrm{~L}^{4}$).

Fig. S32. Docked pose of complexes $\mathbf{3}$ (a), $\mathbf{8}$ (b) and $\mathrm{H}_{2} \mathrm{~L}^{4}$ (c) showing interaction with CT DNA base pairs.

Fig. S33. Docked pose of complex 1 showing interaction with CT DNA base pairs.

Fig. S34. Docked pose of complex 2 showing interaction with CT DNA base pairs.

Fig. S35. Docked pose of complex 4 showing interaction with CT DNA base pairs.

Fig. S36. Docked pose of complex 5 showing interaction with CT DNA base pairs.

Fig. S37. Docked pose of complex 6 showing interaction with CT DNA base pairs.

Fig. S38. Docked pose of complex 7 showing interaction with CT DNA base pairs.

Fig. S39. Docked pose of $\mathrm{H}_{2} \mathrm{~L}^{1}$ ligand showing interaction with CT DNA base pairs.

Fig. S40. Docked pose of $\mathrm{H}_{2} \mathrm{~L}^{2}$ ligand showing interaction with CT DNA base pairs.

Fig. S41. Docked pose of $\mathrm{H}_{2} \mathrm{~L}^{3}$ ligand showing interaction with CT DNA base pairs.

Table S1 Dimensions of hydrogen bonds [distances, \AA, angles $\left({ }^{\circ}\right)$] in ligands $\mathrm{H}_{2} \mathrm{~L}^{2}$ and $\mathrm{H}_{2} \mathrm{~L}^{3}$.

D-H...A	d(D-H)	d(H...A)	d(D...A)	< (DHA)	Symmetry element
$\mathrm{H}_{2} \mathrm{~L}^{2}$					
N3-H3B...O1	0.86(2)	2.25(3)	$3.035(5)$	152(5)	$1-\mathrm{x},-\mathrm{y},-\mathrm{z}$
N3-H3A...O2	0.87(2)	2.08(4)	2.687(5)	126(4)	
N3-H3A...O2	0.87(2)	2.36 (4)	$3.065(5)$	139(4)	$1-\mathrm{x},-\mathrm{y},-\mathrm{z}$
O1-H1...N1	0.87(2)	1.72(3)	2.522(5)	152(6)	
$\mathrm{H}_{2} \mathrm{~L}^{3}$					
N3-H3B...O1	0.87(2)	2.30(2)	3.091(3)	155(3)	-x, -y, 1-z
N3-H3B...O2	0.87(2)	2.13(3)	2.748(2)	128(3)	
N3-H3B...O2	0.86(2)	2.45(3)	3.127(3)	134(3)	-x, -y, 1-z
O1-H2...N1	0.86(2)	1.74(2)	2.528(2)	152(4)	

Table S2. Dimensions obtained via TD DFT of complexes 1-4.

Complex	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
Bond lengths, \AA				
V-O1	1.888	1.887	1.885	1.889
V-O2	1.913	1.915	1.918	1.910
V-N1	2.116	2.114	2.115	2.117
Bond angles, deg				
O1-V-O2	131.15	129.62	128.12	130.83
O1-V-N1	81.86	81.90	81.94	81.84
O2-V-N1	73.66	73.62	73.54	73.63

Table S3. Dimensions obtained via TD DFT of complexes 5-8.

Complex	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
bond lengths, \AA				
V-O1	1.843	1.842	1.833	1.844
V-O2	1.916	1.917	1.922	1.917
V-O3	1.573	1.574	1.571	1.570
V-O4	1.771	1.772	1.775	1.772
V-N1	2.131	2.130	2.164	2.163
Bond angles, deg				
O3-V-O4	107.86	107.80	107.39	107.21
O3-V-O1	108.18	108.32	104.68	104.19
O4-V-O1	97.87	97.94	98.69	98.45
O3-V-O2	110.38	110.66	103.41	103.49
O4-V-O2	89.17	89.14	91.98	95.52
O1-V-O2	136.35	135.92	145.24	145.54
O3-V-N1	97.02	96.73	100.24	100.04
O4-V-N1	153.75	154.07	151.22	151.76
O1-V-N1	81.70	81.71	81.39	81.39
O2-V-N1	74.12	74.12	73.82	73.90

