Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

NJ-ART-07-2019-003875 (Revised)

Simultaneous formation of non-oxidovanadium(IV) and oxidovanadium(V) complexes incorporating phenol-based hydrazone ligands in aerobic condition

Nirmalendu Biswas, Sachinath Bera, Nayim Sepay, Amrita Pal, Tanmoy Halder, Sudipta Ray, Swarnali Acharyya, Anup Kumar Biswas, Michael G. B. Drew and Tapas Ghosh*

Electronic Supplementary Information

Fig. S1. Molecular structure of H_2L^3 with ellipsoids at 30% probability. Hydrogen bonds are shown as dotted bonds.

Fig. S2. Electronic spectra of 2 in CH_2Cl_2 . (black experimental; red, green, blue and sky deconvoluted).

Fig. S3. Electronic spectra of 3 in CH_2Cl_2 . (black experimental; red, green, blue and sky deconvoluted).

Fig. S4. Electronic spectra of 4 in CH_2Cl_2 . (black experimental; red, green, blue and sky deconvoluted).

Fig. S5. Electronic spectra of 6 in CH₂Cl₂. (black experimental; red, green and blue deconvoluted).

Fig. S6. Electronic spectra of 7 in CH_2Cl_2 . (black experimental; red, green and blue deconvoluted).

Fig. S7. Electronic spectra of 8 in CH₂Cl₂. (black experimental; red, green and blue deconvoluted).

Fig. S8. ⁵¹V NMR spectra of 5-8 complexes in CDCl₃ solution at 298 K.

Fig. S9. Cyclic voltammogram of 1 in CH_2Cl_2 .

Fig. S10. Cyclic voltammogram of 3 in CH_2Cl_2 .

Fig. S11. Cyclic voltammogram of 4 in CH₂Cl₂.

Fig. S12. Cyclic voltammogram of 6 in CH_2Cl_2 .

Fig. S13. Cyclic voltammogram of 7 in CH₂Cl₂.

Fig. S14. Cyclic voltammogram of 8 in CH_2Cl_2 .

Fig. S15. X-band EPR spectra of complex **2** in CH₂Cl₂ solution at 300 K (top) and at 77 K (bottom).

Fig. S16. X-band EPR spectra of complex **3** in CH₂Cl₂ solution at 300 K (top) and at 77 K (bottom).

Fig. S17. X-band EPR spectra of complex 4 in CH₂Cl₂ solution at 300 K (top) and at 77 K (bottom).

Fig. S18. Schematic diagram of selected frontier orbitals of complexes 1-8 in their ground state geometries.

Fig. S19. DFT optimized structure of complexes 1-8.

Fig. S20. Cytotoxic activity of the H_2L^{1-4} ligands.

Fig. S21. Cytotoxic activity of [V^{IV}O(aa)₂].

Fig. S22. Fluorescence spectra of EB + 10^{-4} M DNA control + $(1-10) \times 10^{-5}$ M complex **1**. The arrow shows that the intensity decreases with increasing concentration of complex 1. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) - DNA complex caused by complex **1**).

Fig. S23. Fluorescence spectra of EB + 10^{-4} M DNA control + $(1-10) \times 10^{-5}$ M complex **3**. The arrow shows that the intensity decreases with increasing concentration of complex 1. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by complex **3**).

Fig. S24. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex 4. The arrow shows that the intensity decreases with increasing concentration of complex 4. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) - DNA complex caused by complex 4).

Fig. S25. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex 5. The arrow shows that the intensity decreases with increasing concentration of complex 5. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) - DNA complex caused by complex 5).

Fig. S26. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex 6. The arrow shows that the intensity decreases with increasing concentration of complex 6. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) - DNA complex caused by complex 6).

Fig. S27. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex **8**. The arrow shows that the intensity decreases with increasing concentration of complex 8. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) - DNA complex caused by complex **8**).

Fig. S28. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M ligand H₂L¹. The arrow shows that the intensity decreases with increasing concentration of ligand H₂L¹. (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand H₂L¹).

Fig. S29. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex H₂L². The arrow shows that the intensity decreases with increasing concentration of ligand H₂L² (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand H₂L²).

Fig. S30. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex H₂L³. The arrow shows that the intensity decreases with increasing concentration of ligand H₂L³ (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand H₂L³).

Fig. S31. Fluorescence spectra of EB + 10⁻⁴ M DNA control + (1-10) \times 10⁻⁵ M complex H₂L⁴. The arrow shows that the intensity decreases with increasing concentration of ligand H₂L⁴ (Inset: Stern-Volmer plot for the quenching of fluorescence of the ethidium bromide (EB) -DNA complex caused by ligand H₂L⁴).

Fig. S32. Docked pose of complexes 3 (a), 8 (b) and H₂L⁴ (c) showing interaction with CT DNA base pairs.

Fig. S33. Docked pose of complex 1 showing interaction with CT DNA base pairs.

Fig. S34. Docked pose of complex 2 showing interaction with CT DNA base pairs.

Fig. S35. Docked pose of complex 4 showing interaction with CT DNA base pairs.

Fig. S36. Docked pose of complex 5 showing interaction with CT DNA base pairs.

Fig. S37. Docked pose of complex 6 showing interaction with CT DNA base pairs.

Fig. S38. Docked pose of complex 7 showing interaction with CT DNA base pairs.

Fig. S39. Docked pose of H_2L^1 ligand showing interaction with CT DNA base pairs.

Fig. S40. Docked pose of H_2L^2 ligand showing interaction with CT DNA base pairs.

Fig. S41. Docked pose of H_2L^3 ligand showing interaction with CT DNA base pairs.

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	Symmetry element
		H_2L^2			
N3-H3BO1	0.86(2)	2.25(3)	3.035(5)	152(5)	1-x, -y, -z
N3-H3AO2	0.87(2)	2.08(4)	2.687(5)	126(4)	
N3-H3AO2	0.87(2)	2.36(4)	3.065(5)	139(4)	1-x, -y, -z
O1-H1N1	0.87(2)	1.72(3)	2.522(5)	152(6)	
		H_2L^3			
N3-H3BO1	0.87(2)	2.30(2)	3.091(3)	155(3)	-x, -y, 1-z
N3-H3BO2	0.87(2)	2.13(3)	2.748(2)	128(3)	
N3-H3BO2	0.86(2)	2.45(3)	3.127(3)	134(3)	-x, -y, 1-z
O1-H2N1	0.86(2)	1.74(2)	2.528(2)	152(4)	

Table S1 Dimensions of hydrogen bonds [distances, Å, angles (°)] in ligands H_2L^2 and H_2L^3 .

Table S2. Dimensions obtained via TD DFT of complexes 1-4.

Complex	1	2	3	4				
Bond lengths, Å								
V-01	1.888	1.887	1.885	1.889				
V-02	1.913	1.915	1.918	1.910				
V-N1	2.116	2.114	2.115	2.117				
Bond angles, deg								
01-V-02	131.15	129.62	128.12	130.83				
01-V-N1	81.86	81.90	81.94	81.84				
O2-V-N1	73.66	73.62	73.54	73.63				

Complex	5	6	7	8				
bond lengths, Å								
V-01	1.843	1.842	1.833	1.844				
V-O2	1.916	1.917	1.922	1.917				
V-O3	1.573	1.574	1.571	1.570				
V-O4	1.771	1.772	1.775	1.772				
V-N1	2.131	2.130	2.164	2.163				
Bond angles, deg								
O3-V-O4	107.86	107.80	107.39	107.21				
O3-V-O1	108.18	108.32	104.68	104.19				
O4-V-O1	97.87	97.94	98.69	98.45				
O3-V-O2	110.38	110.66	103.41	103.49				
O4-V-O2	89.17	89.14	91.98	95.52				
O1-V-O2	136.35	135.92	145.24	145.54				
O3-V-N1	97.02	96.73	100.24	100.04				
04-V-N1	153.75	154.07	151.22	151.76				
01-V-N1	81.70	81.71	81.39	81.39				
O2-V-N1	74.12	74.12	73.82	73.90				

Table S3. Dimensions obtained via TD DFT of complexes **5-8**.