Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic supplementary information for New Journal of Chemistry (NJC)

A procalcitonin photoelectrochemical immunosensor: NCQDs and Sb₂S₃ co-sensitized hydrangea-shaped WO₃ as matrix through layer-by-layer assembly

Xin Liu^{a,b}, Chunzhu Bao^{a,b}, Xinrong Shao^{a,b}, Yong Zhang^{a,b}, Nuo Zhang^{a,b}, Xu Sun^{a,b}, Dawei Fan^{a,b,*}, Qin Wei^{a,b}, Huangxian Ju^{a,b,c}

^a Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China ^b Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China ^c Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, PR China

*Corresponding author

E-mail: jndxfandawei@126.com (D. Fan)

Tel: +86-531-82760510

1. Materials and reagents

ITO glass (resistivity 10 Ω /sq) was obtained from Zhuhai Kaivo Electronic Components Co., Ltd. China. Bovine serum albumin (BSA) was obtained from Sigma-Aldrich (Beijing, China). Diethylenetriaminepentaacetic acid (DTPA) was obtained from Aladdin Industrial Corporation. 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) were obtained from Aladdin Reagent Database Inc (Shanghai, China). Phosphate buffered saline (PBS, 1/15 mol/L KH₂PO₄ and 1/15 mol/L Na₂HPO₄) containing AA was used as an electrolyte for the PEC measurements.

2. Apparatus

Electrochemical impedance spectroscopy (EIS) analysis was performed on an RST5200F electrochemical workstation (Zhengzhou Shiruisi Technology Co., Ltd, China) with a three-electrode system in a 5.0 mmol/L [Fe(CN)₆]^{3-/4-} solution containing 0.10 mol/L KCl. Scanning electron microscope (SEM) images and energy dispersive spectrometry (EDS) were obtained using a field emission SEM (Zeiss, Germany). X-ray diffraction (XRD) patterns were collected on a D8 advance X-ray diffractometer (Bruker AXS, Germany). UV-vis spectra were obtained on a Shimadzu UV-3101PC spectrometer (Japan). Fourier transform infrared spectra (FTIR) were obtained on Shimadzu VERTEX 70 spectrometer.

3. The SEM image of NCQDs, the EDS image of WO₃/NCQDs/Sb₂S₃, and the band gap image of Sb₂S₃

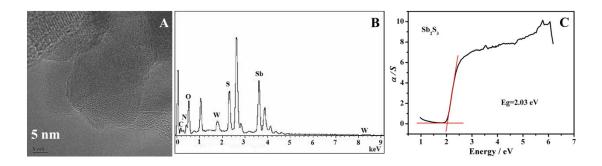


Fig. S1. (A)TEM image of NCQDs and (B) EDS image of WO₃/NCQDs/Sb₂S₃, (C) the band gap image of Sb₂S₃.

4. Optimization of experimental conditions

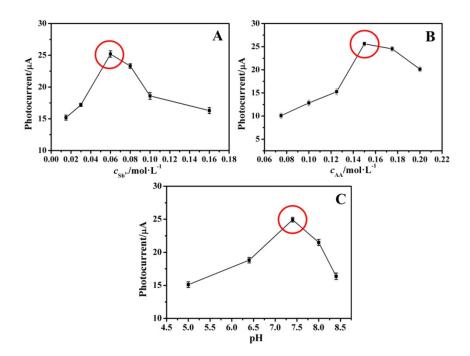


Fig. S2. Optimization of experimental conditions: (A) SbCl₃ concentration, (B) AA concentration,(C) pH value, the applied potential was 0 V.

5. The specific data graph of RSD



Fig. S3. The specific data graph of RSD

6. Simulation parameters of the equivalent circuit components

Electrode	R _s	R _{et}	$C_{ m dl}$	Z_{w}
	(Ω)	(Ω)	(F)	
ITO	64.75	19.57	3.944×10 ⁻⁶	0.010460
ITO/WO ₃	63.33	33.82	6.216×10 ⁻⁶	0.012520
ITO/WO ₃ /NCQDs	64.79	35.64	6.483×10 ⁻⁶	0.011540
ITO/WO ₃ /NCQDs/Sb ₂ S ₃	66.34	136.2	5.498×10-6	0.005094
ITO/WO ₃ /NCQDs/Sb ₂ S ₃ /PDA	63.09	152.2	9.308×10 ⁻⁶	0.008395
ITO/WO3/NCQDs/Sb2S3/PDA/anti-PCT	64.65	251.1	5.193×10-6	0.003823
ITO/WO3/NCQDs/Sb2S3/PDA/anti-PCT/BSA	65.99	456.0	8.788×10-6	0.004481
ITO/WO ₃ /NCQDs/Sb ₂ S ₃ /PDA/anti-PCT/BSA/PCT	63.98	580.6	9.730×10 ⁻⁶	0.003661

Table S1. Simulation parameters of the equivalent circuit components