Synthesis and Spectroscopic Characterization of Ternary Copper(II) Complexes Containing Nitrogen and Oxygen Donors as Functional Mimics of Catechol Oxidase and Phenoxazinone Synthase

Abd El-Motaleb. M. Ramadan^{a*}, Shaban. Y. Shaban^a, Mohamed. M. Ibrahim^{a,b}, Adel A. Nassar^c, Shehab A. Sallam^d, Sami A. El-Harbi^e, Walid Omar^a

^aDepartment of Chemistry, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
^bDepartment of Chemistry, Faculty of Science, Taif University, Taif, Saudi Arabia
^cDepartment of Chemistry, Faculty of Science, El-Menuofia University, Egypt
^dDepartment of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
^eDepartment of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Value Science, Value Scie

Makkah, Saudi Arabia

New Journal of Chemistry

S1: FTIR spectrum of Me₄en

S2: FTIR spectrum of EDTA

S3: Multi FTIR spectra of complex 1 and its ligand system L and L'

S4: FTIR spectrum of N-methyl iminodiacetic acid

S5: Multi FTIR spectra of complex ${\bf 2}$ and its ligand system L and L'

S6: FTIR spectrum of complex 2

S7: ESR spectra of complexes ${\bf 1}$ and ${\bf 2}$

S8: (a) Cyclic voltammogram for complex **2** at CPE at phosphate buffer pH 7 using scan rate of 50 mV/s; (b) Effect of scan rate on the peak current height of 1×10^{-3} M complex **2** using cyclic voltammetry at CPE at phosphate buffer pH 7

S9: Cyclic voltammogram for 1×10^{-3} M 3,5-DTBCH₂ at CPME at phosphate buffer pH 7 using scan rate of 50 mV/s.

S10: Cyclic voltammogram for 1×10^{-3} M *o*-APH₃ at CPME at phosphate buffer pH 7 using scan rate of 50 mV/s

S11: Dependence of the initial rate on the concentration of the substrate for the oxidation reaction of 3,5-DTBCH₂ catalyzed by complex **2** in methanol; (a) is the first step and (b) is the second step. The concentration of complex was 1.0×10^{-4} M and the reaction was followed at 400 nm

S12: Dependence of the initial rate on the concentration of the substrate for the oxidation reaction of CatH₂ catalyzed by complex **1** in methanol; (a) is the first step and (b) is the second step. The concentration of complex was 1.0×10^{-4} M and the reaction was followed at 390 nm

S13: Dependence of the initial rate on the concentration of the substrate for the oxidation reaction of 4-CH₃-CatH₂ catalyzed by complex 1 in methanol; (a) is the first step and (b) is the second step. The concentration of complex was 1.0×10^{-4} M and the reaction was followed at 400 nm

S14: Dependence of the initial rate on the substrate concentration for the oxidation reaction of 4- NO₂-CatH₂ catalyzed by complex 1 in methanol for the first step; the concentration of complex was 1.0×10^{-4} M and the reaction was followed at 400 nm

S15: Dependence of the initial rate for on the concentration of the substrate for the oxidation reaction of *o*-APH₃ catalyzed by complex **2** in methanol; (a) is the first step and (b) is the second step. The concentration of complex was 1.0×10^{-4} M and the reaction was followed at 433 nm

S16: Dependence of the initial rate for on the concentration of the substrate for the oxidation reaction of *o*-APH₃ catalyzed by complex **2** in methanol; (a) is the first step and (b) is the second step. The concentration of complex was 1.0×10^{-4} M and the reaction was followed at 433 nm