Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information for New Journal of Chemistry; Beng

Supporting Information for:

Copper-catalyzed alkenylation of novel *N*-iodoarylated allylic ketopiperazinonates with

unactivated alkenes

Timothy K. Beng* and Antonio Moreno

Department of Chemistry, Central Washington University, Ellensburg, WA 98926, USA <u>Timothy.beng@cwu.edu</u>

Contents:

1. General Experimental Information and Procedures	S2
2. Scheme 1 results (CCR)	S3
3. Scheme 2 results (Alkenylation)	S30
4. References	S65

2. Experimental Section

All experiments involving air and moisture-sensitive reagents were carried out under an inert atmosphere of nitrogen and using freshly distilled solvents. Freshly purchased 1,4-dioxane was stored under 4 A^o molecular sieves for several days prior to use. THF was distilled from sodium benzophenone ketyl. All amines, alkenes and enals were newly purchased and used without further purification. Column chromatography was performed on silica gel (230-400 mesh). Thin-layer chromatography (TLC) was performed using Silicycle SiliaplateTM glass backed plates (250 µm thickness, 60 Å porosity, F-254 indicator) and visualized using UV (254 nm) or CAM, *p*-anisaldehyde, or KMnO₄ stain. All reported temperatures were internal to a reaction vessel. Unless otherwise indicated, ¹H, ¹³C, and DEPT-135 spectra were acquired using CDCl₃ as solvent, at room temperature. Chemical shifts are quoted in parts per million (ppm). HRMS-EI⁺ data were obtained using either electronspray ionization (ESI) or electron impact (EI) techniques. High-resolution ESI was obtained on an LTQ-FT (ion trap; analyzed using MassLynx). Brine solutions are saturated solutions of aqueous sodium chloride.

General Procedure A: Reaction of 1,3-azadienes with 4

A 20 mL screw-cap vial was flame-dried, evacuated and flushed with nitrogen. A solution of the 1,3-azadiene (10.0 mL, 0.10 M in freshly distilled toluene) was added to the vial at room temperature followed by anhydride **4** (10 mmol, 1.0 equiv). The contents were placed in a pre-heated oil bath thermostatted 100 °C. After complete consumption of the enal (as judged by TLC and NMR), the mixture/suspension was cooled to room temperature and washed several times with petroleum ether, then concentrated under reduced pressure to afford the crude cycloadduct.

Methyl esterification of cycloadducts: To a stirring suspension of the acid (1 mmol), dissolved in DMF (10 mL), and K_2CO_3 (3 equiv) was added methyl iodide (2 equiv) under a nitrogen atmosphere. The reaction mixture was stirred for 12 h (TLC monitoring). After complete conversion, it was diluted with water and extracted with EtOAc (2×50 mL). The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated *in vacuo* to give the desired ester, which was purified by flash chromatography on silica.

General Procedure B (CuBr-catalyzed cross-coupling with alkenes): To the *N*-iodoaryl ketopiperazinonate (0.5 mmol) and alkene (2.0 mmol, 2.0 equiv), dissolved in 1,4-dioxane (2 mL), was added CuBr (0.05 mmol, 10 mol%) in an oven-dried vial equipped with a stir bar. A solution of potassium carbonate (138 mg, 2.0 mmol, 2.0 equiv) was next added. The suspension was heated to 100 °C. It was then monitored by TLC until complete consumption of the starting material (16 to 36 h). The reaction mixture was then filtered through a short plug of Celite with the aid of ethyl acetate. The filtrate was concentrated and the crude material was purified by flash chromatography on silica eluting with hexanes:EtOAc.

Prepared from 1,3-azadiene **3a** (3.33 g, 10.0 mmol) and anhydride **4** (1.291 g, 10.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). T = 100 °C, time = 16 h. Yield = 3.57 g, 75%, 95:5 dr. ¹H NMR (400 MHz, Chloroform*d*) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.38 – 7.22 (m, 6H), 6.94 (d, *J* = 8.1 Hz, 2H), 6.43 (dd, *J* = 16.0, 8.2 Hz, 1H), 6.31 (d, *J* = 15.9 Hz, 1H), 4.56 (dd, *J* = 8.5, 2.4 Hz, 1H), 3.82 (s, 3H), 3.63 – 3.57 (m, 3H), 2.60 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.79, 166.76, 140.59, 138.50, 135.81, 133.86, 129.74, 128.77, 128.40, 126.82, 126.77, 92.95, 65.80, 64.78, 54.74, 52.09, 42.65. **HRMS-EI**⁺ (*m*/*z*): calc'd for C₂₁H₂₁IN₂O₃ 476.0597; found 476.0591. FTIR (KBr): 2932.4213, 1721.5204, 1666.3806, 1606.9472, 1511.0233, 1448.5693, 1414.7191, 1384.979, 1357.4641, 1298.7878, 1247.5543, 1179.3944, 1135.9684, 1031.8974, 995.8644, 968.9312, 919.9415, 831.0313, 750.2581, 694.7613.

2b, 70%

Prepared from 1,3-azadiene **3b** (694 mg, 2.0 mmol) and anhydride **4** (258 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). T = 100 °C, time = 16 h. Yield = 687 mg, 70%, 95:5 dr. ¹H NMR (400 MHz, Chloroform*d*) δ 7.71 – 7.58 (m, 2H), 7.31 – 7.21 (m, 3H), 7.11 – 7.05 (m, 2H), 7.03 – 6.88 (m, 2H), 6.31 (s, 1H), 4.48 – 4.42 (br s, 1H), 3.74 (s, 3H), 3.69 – 3.58 (m, 2H), 3.56 (d, *J* = 4.2 Hz, 1H), 2.35 (s, 6H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.93, 167.37, 140.38, 138.38, 138.27, 136.62, 134.28, 130.53, 129.16, 129.03, 128.96, 128.92, 128.33, 128.28, 127.17, 92.54, 69.20, 65.87, 55.64, 52.25, 42.48, 15.13. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₂H₂₃IN₂O₃ 490.0753; found 490.0761.

Prepared from 1,3-azadiene **3c** (1815 mg, 5.0 mmol) and anhydride **4** (646 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 16 h. Yield = 1949 mg, 77%, 95:5 dr. ¹H NMR (400 MHz, Chloroform*d*) δ 7.67 (d, 2H), 7.27 (d, 2H), 6.84 (d, 2H), 6.73 (d, 2H), 6.29 – 6.14 (m, 2H), 4.37 (dd, *J* = 7.0, 2.6 Hz, 1H), 3.64 (overlapping singlets, 6H), 3.66 – 3.59 (m, 3H), 2.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 166.7, 159.8, 140.6, 138.4, 133.3, 129.8, 128.5, 128.0, 124.5, 114.1, 92.9, 65.9, 64.9, 55.4, 54.8, 52.1, 42.7. **HRMS-EI**⁺ (*m*/*z*): calc'd for C₂₂H₂₃IN₂O₄ 506.0703; found 506.0709.

Prepared from 1,3-azadiene **3d** (0.5 mmol) and anhydride **4** (65 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 16 h. Yield = 153.1 mg, 84%, 95:5 dr. **HRMS-EI**⁺ (m/z): calc'd for C₂₂H₂₄N₂O₃ 364.1787; found 364.1783.

Prepared from 1,3-azadiene **3e** (0.5 mmol) and anhydride **4** (65 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 16 h. Yield = 209.6 mg, 79%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (d, *J* = 8.1 Hz, 2H), 7.39 – 7.22 (m, 6H), 7.13 (d, *J* = 8.1 Hz, 2H), 6.43 (dd, *J* = 15.9, 8.2 Hz, 1H), 6.31 (d, *J* = 15.9 Hz, 1H), 4.63 – 4.53 (m, 1H), 3.83 (s, 3H), 3.75 – 3.57 (m, 3H), 2.60 (s, 3H), 1.10 – 1.03 (m, 21H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 166.7, 140.7, 138.5, 135.9, 133.8, 133.7, 133.0, 128.7, 128.3, 127.5, 126.9, 126.7, 106.4, 91.4, 65.9, 64.8, 54.8, 52.0, 42.6, 18.7, 11.3. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₂H₄₂N₂O₃Si 530.2965; found 530.2973.

Prepared from 1,3-azadiene **3f** (0.5 mmol) and anhydride **4** (65 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 16 h. Yield = 154.1 mg, 81%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.37 – 7.21 (m, 6H), 6.92 – 6.69 (m, 3H), 6.44 (dd, *J* = 15.9, 8.2 Hz, 1H), 6.33 (d, *J* = 15.9 Hz, 1H), 4.59 (dd, *J* = 8.3, 2.7 Hz, 1H), 3.83 (s, 3H), 3.67 – 3.57 (m, 6H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.8, 166.7, 160.2, 141.9, 136.0, 133.6, 129.9, 128.7, 128.2, 127.2, 126.7, 119.9, 113.5, 65.9, 64.9, 55.3, 54.9, 52.0, 42.6. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₂H₂₄N₂O₄ 380.1736; found 380.1741.

Prepared from 1,3-azadiene **3g** (0.5 mmol) and anhydride **4** (65 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 16 h. Yield = 148.5 mg, 71%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.69 – 7.38 (m, 7H), 6.51 – 6.37 (m, 1H), 6.30 (d, *J* = 15.9 Hz, 1H), 5.86 (d, *J* = 11.4 Hz, 1H), 4.60 (dd, *J* = 8.4, 2.6 Hz, 1H), 3.73 – 3.58 (m, 6H), 2.59 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 166.8, 140.8, 136.0, 134.7, 133.6, 129.3, 128.7, 127.8, 126.7, 112.6, 65.9, 64.9, 56.5, 54.8, 42.6. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₀H₂₁F₃N₂O₃ 418.1504; found 418.1508.

Prepared from 1,3-azadiene **3h** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 2 h. Yield = 272.4 mg, 85%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 7.0 Hz, 2H), 7.28 (dt, *J* = 14.9, 7.6 Hz, 3H), 7.21 (d, *J* = 7.4 Hz, 1H), 6.50 (d, *J* = 16.0 Hz, 1H), 6.28 (dd, *J* = 16.0, 7.3 Hz, 1H), 4.69 (dd, *J* = 7.7, 2.8 Hz, 1H), 3.73 (s, 3H), 3.62 – 3.49 (m, 3H), 2.44 (s, 3H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.3, 168.0, 136.2, 131.4, 130.9, 130.2, 129.9, 129.2, 128.7, 128.1, 128.0, 126.6, 126.0, 67.1, 58.2, 58.1, 55.6, 51.7, 41.7, 28.4. **HRMS-EI**⁺ (*m/z*): calc'd for C₁₉H₂₆N₂O₃ 330.1943; found 330.1946.

Me

I CMe₃

1.07 1.04

6

mm

0″

6.38

hund

8

0.6

0.5

0.4

0.3-

0.2-

0.1

0

10

9

Normalized Intensity

O

ЭМе

Ph

1.10

m

7

Chemical Shift (ppm)

3.05 3.02 ЦЦ

3

9.00 U

0

Prepared from 1,3-azadiene **3i** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). T = 100 °C, time = 2 h. Yield = 317.2 mg, 88%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 (d, *J* = 8.9 Hz, 2H), 6.83 (d, *J* = 8.9 Hz, 2H), 6.43 (d, *J* = 16.0 Hz, 1H), 6.13 (dd, *J* = 16.0, 7.5 Hz, 1H), 4.66 (dd, *J* = 7.5, 2.6 Hz, 1H), 3.87 – 3.64 (m, 6H), 3.61 – 3.54 (m, 3H), 2.44 (s, 3H), 1.39 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.4, 168.0, 159.5, 130.8, 130.3, 128.9, 128.6, 127.7, 127.1, 114.1, 67.2, 58.3, 58.0, 55.5, 55.3, 51.6, 41.7, 29.7. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₀H₂₈N₂O₄ 360.2049; found 360.2045.

Prepared from 1,3-azadiene **3j** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). T = 100 °C, time = 4 h. Yield = 306.1 mg, 78%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.41 – 7.15 (m, 10H), 6.27 (d, *J* = 9.4 Hz, 1H), 4.47 (h, *J* = 9.3, 8.1 Hz, 1H), 4.36 (d, *J* = 9.4 Hz, 1H), 3.63 – 3.53 (m, 6H), 2.49 (s, 3H), 1.04 (d, *J* = 6.9 Hz, 3H), 0.71 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.6, 166.6, 142.3, 141.5, 138.8, 129.9, 129.7, 128.6, 128.4, 128.1, 127.9, 127.8, 66.6, 54.2, 53.4, 51.6, 45.7, 42.2, 20.6, 19.1. **HRMS-EI**⁺ (*m*/*z*): calc'd for C₂₄H₂₈N₂O₃ 392.2100; found 392.2104.

Prepared from 1,3-azadiene **3k** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). T = 100 °C, time = 2 h. Yield = 235.9 mg, 77%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.36 (br s, 1H), 6.41 – 6.22 (m, 4H), 4.57 (h, *J* = 7.0 Hz, 1H), 4.34 (dd, *J* = 7.3, 2.3 Hz, 1H), 3.73 (s, 3H), 3.60 (d, *J* = 17.4 Hz, 1H), 3.58 – 3.45 (m, 2H), 2.48 (s, 3H), 1.12 (dd, *J* = 11.9, 6.9 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 171.0, 166.9, 151.8, 142.4, 128.9, 120.1, 111.5, 108.8, 66.5, 56.9, 54.5, 51.8, 46.4, 42.1, 20.5, 19.8. **HRMS-EI**⁺ (*m/z*): calc'd for C₁₆H₂₂N₂O₄ 306.1580; found 306.1576.

Prepared from 1,3-azadiene **31** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (20:80). T = 100 °C, time = 2 h. Yield = 283 mg, 70%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 6.99 - 6.82 (m, 3H), 6.51 (d, *J* = 15.9 Hz, 1H), 6.30 (dd, *J* = 16.0, 7.7 Hz, 1H), 4.58 (q, *J* = 7.1 Hz, 1H), 4.38 (d, *J* = 7.6 Hz, 1H), 3.86 - 3.73 (m, 9H), 2.48 (s, 3H), 2.31 (s, 3H), 1.13 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.9, 169.1, 166.9, 151.3, 139.6, 131.2, 130.8, 123.0, 119.3, 110.3, 66.6, 57.2, 56.0, 54.5, 51.8, 46.5, 42.1, 20.7, 20.6, 19.8. **HRMS-EI**⁺ (*m*/*z*): calc'd for C₂₁H₂₈N₂O₆ 404.1947; found 404.1954.

Prepared from 1,3-azadiene **3m** (1.0 mmol) and anhydride **4** (129.2 mg, 1.0 equiv) using General Procedure A. Purification: Flash chromatography on silica eluting with hexane/EtOAc (20:80). T = 100 °C, time = 5 h. Yield = 238.5 mg, 66%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.3 Hz, 2H), 7.48 (d, *J* = 8.3 Hz, 2H), 6.64 – 6.47 (m, 2H), 4.54 (tt, *J* = 18.9, 9.6 Hz, 1H), 4.39 (t, *J* = 4.2 Hz, 1H), 3.70 - 3.61 (m, 6H), 2.43 (s, 3H), 1.08 (d,d, *J* = 7.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 170.5, 166.8, 142.6, 135.7, 129.7, 127.2, 124.1, 66.1, 56.9, 54.4, 51.8, 46.4, 42.1, 20.5, 19.7. **HRMS-EI**⁺ (*m/z*): calc'd for C₁₉H₂₃N₃O₅ 361.1638; found 361.1642.

Alkenylation

1a1, 86%

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (15:85). Yield = 194.4 mg, 86%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.45 – 7.31 (m, 4H), 7.31 – 7.18 (m, 4H), 7.22 – 7.13 (m, 2H), 7.17 – 7.08 (m, 2H), 7.12 – 7.03 (m, 2H), 6.94 (s, 2H), 6.34 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.22 (d, *J* = 15.9 Hz, 1H), 4.51 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.71 (s, 3H), 3.62 (d, *J* = 17.5 Hz, 1H), 3.58 – 3.48 (m, 2H), 2.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.90, 140.12, 137.25, 136.70, 136.06, 133.70, 129.48, 128.83, 128.79, 128.34, 127.97, 127.94, 127.90, 127.41, 127.24, 126.82, 126.70, 65.96, 64.89, 54.92, 52.11, 42.68. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₉H₂₈N₂O₃ 452.2100; found 452.1007. FTIR (KBr): 2932.5571, 1721.483, 1665.4081, 1607.2449, 1511.11, 1431.8598, 1414.7076, 1344.99, 1298.4941, 1245.6515, 1179.4413, 1135.306, 1031.8607, 996.7789, 921.8434, 832.167, 701.6744.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (15:85). Yield = 196 mg, 84%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.53 – 7.35 (m, 2H), 7.29 – 7.19 (m, 11H), 7.02 (dd, *J* = 4.7, 2.8 Hz, 2H), 6.41 (ddd, *J* = 15.9, 12.6, 8.3 Hz, 1H), 6.35 – 6.23 (m, 1H), 4.55 (ddd, *J* = 24.7, 8.3, 2.5 Hz, 1H), 3.69 (s, 3H), 3.66 – 3.55 (m, 1H), 3.55 – 3.43 (m, 2H), 2.57 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz,

CDCl₃) δ 170.95, 166.89, 139.85, 138.55, 137.79, 136.91, 136.04, 134.45, 133.68, 129.51, 129.40, 128.76, 128.30, 127.91, 127.26, 127.22, 126.92, 126.80, 126.59, 65.97, 64.88, 54.88, 52.10, 42.66, 21.39. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₀H₃₀N₂O₃ 466.2256; found 466.2261.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 206 mg, 81%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.30 – 7.17 (m, 11H), 7.16 – 7.07 (m, 2H), 6.99 (d, *J* = 1.4 Hz, 2H), 6.42 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.30 (d, *J* = 15.9 Hz, 1H), 4.58 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.80 (s, 3H), 3.68 – 3.56 (m, 3H), 2.57 (s, 3H), 1.29 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.95, 166.90, 151.05, 139.85, 136.94, 136.03, 134.46, 133.67, 129.27, 128.76, 128.29, 127.89, 127.28, 127.23, 127.15,

126.79, 126.40, 125.73, 67.20, 65.98, 64.88, 54.87, 52.09, 42.66, 34.74, 31.39. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₃H₃₆N₂O₃ 508.2726; found 508.2721.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (20:80). Yield = 205 mg, 85%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.42 (m, 2H), 7.37 – 7.17 (m, 9H), 7.16 – 7.08 (m, 3H), 6.87 – 6.74 (m, 1H), 6.48 – 6.35 (m, 1H), 6.35 (d, *J* = 15.8 Hz, 1H), 4.54 (d, *J* = 15.8, 2.0 Hz, 1H), 3.78 – 3.60 (m, 6H), 3.60 – 3.48 (m, 3H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.88, 159.99, 140.12, 138.68, 136.59, 136.03, 133.69, 129.76, 129.36, 128.77, 128.32, 128.23, 127.95, 127.43, 127.20, 126.80, 119.40, 113.59, 111.84, 65.97, 64.87, 55.37, 54.89, 52.10, 42.66. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₀H₃₀N₂O₄ 482.2206; found 482.2202.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (20:80). Yield = 231 mg, 88%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.30 (m, 9H), 7.27 – 7.17 (m, 2H), 6.95 – 6.81 (m, 4H), 6.47 – 6.23 (m, 2H), 4.55 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.77 (s, 3H), 3.65 – 3.54 (m, 3H), 2.35 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.89, 155.39, 139.81, 138.54, 136.93, 136.04, 133.88, 133.67, 132.42, 129.77, 129.02, 128.80, 128.76, 128.30, 127.90, 127.22, 126.79, 126.74, 124.39,

78.92, 65.96, 65.83, 64.87, 64.81, 54.88, 54.78, 52.12, 52.09, 42.69, 42.65, 28.99. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₃H₃₆N₂O₄ 524.2675; found 524.2675.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (10:90). Yield = 204 mg, 80%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.51 – 7.33 (m, 3H), 7.35 – 7.09 (m, 12H), 6.42 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.36 – 6.24 (dd, dd, *J* = 15.9, 8.3 Hz, 1H), 4.58 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.80 (s, 3H), 3.81 – 3.66 (m, 3H), 2.57 (s, 3H), 2.26 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.92, 169.58, 166.98, 140.10, 136.57, 136.01, 135.05, 133.73, 128.77, 128.44, 128.33, 128.15, 127.96, 127.60, 127.40, 127.14,

126.80, 121.93, 65.94, 64.89, 54.86, 52.11, 42.66, 21.27. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₁H₃₀N₂O₅ 510.2155; found 510.2162.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 185 mg, 76%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.50 – 7.40 (m, 2H), 7.40 – 7.33 (m, 2H), 7.21 – 7.09 (m, 9H), 6.95 – 6.80 (m, 2H), 6.42 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.29 (d, *J* = 15.9 Hz, 1H), 4.59 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.80 (s, 3H), 3.69 (d, *J* = 17.6 Hz, 1H), 3.65 – 3.56 (m, 2H), 2.57 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.88, 140.28, 136.33, 136.01, 135.75, 133.70, 133.40, 128.95, 128.77, 128.53, 128.33, 128.12, 128.00, 127.82, 127.49, 127.43, 127.17, 126.79, 65.97, 64.86, 54.88, 52.11, 42.67. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₉H₂₇ClN₂O₃ 486.1710; found 486.1717.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (5:95). Yield = 161 mg, 71%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 5.0 Hz, 1H), 7.66 – 7.51 (m, 5H), 7.24 – 7.16 (m, 9H), 6.40 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.26 (d, *J* = 15.9 Hz, 1H), 4.56 (dd, *J* = 8.3, 2.5 Hz, 1H), 3.78 (s, 3H), 3.75 – 3.61 (m, 2H), 3.58 (d, *J* = 2.5 Hz, 1H), 2.54 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.79, 167.25, 154.61, 148.25, 140.86, 138.05, 135.88, 135.64, 133.91, 133.20, 128.76, 128.36, 128.26, 128.01, 126.85, 126.80, 122.82, 122.60, 65.78, 64.88, 54.85, 52.19, 42.63. **HRMS-EI**⁺ (*m/z*): calc'd for

C₂₈H₂₇N₃O₃ 453.2052; found 453.2059. FTIR (KBr): 2965.2971, 2872.3128, 1716.4748, 1650.8904, 1612.9884, 1585.9456, 1513.1051, 1455.3449, 1359.3702, 1304.1365, 1251.3997, 1177.4761, 1135.5369, 1033.8548, 996.7497, 896.0777, 833.6912, 804.9269.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (5:95). Yield = 173 mg, 73%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.52 (d, *J* = 8.4 Hz, 1H), 7.41 (dd, *J* = 8.8, 2.3 Hz, 2H), 7.33 – 7.18 (m, 8H), 6.73 (d, *J* = 15.9 Hz, 1H), 6.40 (dd, *J* = 15.9, 8.3 Hz, 1H), 6.28 (d, *J* = 15.9 Hz, 1H), 4.57 (dd, *J* = 8.3, 2.6 Hz, 1H), 3.79 (s, 3H), 3.63 – 3.54 (m, 3H), 2.56 (s, 3H), 2.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.93, 166.85, 150.93, 149.72, 140.38, 136.04, 135.97, 133.71, 130.84, 130.45, 128.76, 128.33, 128.04, 127.22, 127.12, 126.77, 119.00, 65.97, 64.84, 54.87, 52.10, 42.66, 15.54. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₇H₂₇N₃O₃S 473.1773; found 473.1778.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 215.5 mg, 80%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.56 – 7.29 (m, 11H), 7.18 – 7.06 (m, 4H), 6.33 (s, 1H), 4.54 – 4.48 (m, 1H), 3.62 – 3.53 (m, 6H), 2.41 (s, 3H), 1.85 (s, 3H), 1.21 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.05, 167.48, 155.36, 139.55, 138.27, 136.66, 134.57, 132.43, 130.40, 129.03, 128.97, 128.93, 128.34, 128.29, 127.21, 127.19, 127.05, 126.96, 126.73, 124.39, 78.92, 69.33, 66.02, 55.79, 52.22, 42.48, 28.97, 28.93, 15.14. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₄H₃₈N₂O₄ 538.2832; found 538.2837.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 230 mg, 83%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 2H), 7.28 – 7.17 (m, 4H), 7.15 – 7.06 (m, 2H), 6.83 – 6.74 (m, 4H), 6.69 (dd, J = 8.9, 2.3 Hz, 2H), 6.31 – 6.16 (m, 2H), 4.46 – 4.33 (m, 1H), 3.72 – 3.62 (overlapping singlets, 6H), 3.61 – 3.50 (m, 3H), 2.54 (s, 3H), 1.30 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 171.00, 166.88, 159.74, 155.35, 139.82, 138.49, 136.86, 133.11, 132.42, 129.79, 129.33,

128.95, 128.75, 128.03, 128.01, 127.97, 127.91, 127.81, 127.17, 126.78, 126.75, 124.88, 124.38, 114.16, 114.12, 66.12, 65.01, 55.43, 54.89, 52.05, 42.64, 28.96. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₄H₃₈N₂O₅ 554.2781; found 554.2788.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 216.4 mg, 91%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 (d, *J* = 15.5 Hz, 1H), 7.24 (d, *J* = 1.9 Hz, 1H), 7.30 – 7.21 (m, 5H), 7.25 – 7.16 (m, 1H), 7.14 – 7.06 (m, 2H), 6.39 (dd, *J* = 15.8, 8.3 Hz, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 6.14 (d, *J* = 15.5 Hz, 1H), 5.70 (s, 1H), 4.54 (dd, *J* = 8.3, 2.4 Hz, 1H), 3.77 (s, 3H), 3.72 – 3.53 (m, 6H), 2.55 (s, 3H), 1.34 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.82, 166.95, 165.09, 141.58, 138.94, 135.88, 134.46, 133.83, 128.76, 128.68, 128.36, 127.92, 126.93, 126.77, 122.85, 67.18, 65.78,

64.79, 54.81, 52.09, 51.49, 42.63, 28.96, 28.91. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₈H₃₂N₃O₄ 475.2471; found 475.2478.

1a13, 76%

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (15:85). Yield = 170.4 mg, 76%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.67 – 7.59 (d, 2H), 7.41 – 7.28 (m, 6H), 6.85 (d, 2H), 6.56 (d, *J* = 15.8 Hz, 1H), 6.39 (ddd, *J* = 15.8, 8.4, 3.7 Hz, 1H), 6.33 – 6.13 (m, 1H), 4.65 (dd, *J* = 6.4, 1.4 Hz, 1H), 4.53 (ddd, *J* = 15.8, 8.4, 2.5 Hz, 1H), 3.68 (s, 3H), 3.63 – 3.42 (m, 4H), 2.55 (s, 3H), 2.04 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.90, 166.84, 166.77, 140.62, 138.54, 135.56, 133.88, 133.71, 133.34, 129.77, 128.80, 128.75, 128.43, 127.91, 127.53, 126.86, 126.79, 126.77, 124.02, 65.83, 64.81, 54.78, 52.13, 42.69, 21.11. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₆H₂₈N₂O₅ 448.1998; found 448.1992.

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (50:50). Yield = 136.3 mg, 63%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.26 (m, 7H), 7.20 – 7.12 (m, 2H), 6.39 (ddd, *J* = 15.8, 8.4, 5.4 Hz, 1H), 6.31 – 6.11 (m, 1H), 6.21 – 6.11 (m, 1H), 4.53 (td, *J* = 9.7, 9.0, 2.5 Hz, 1H), 3.78 (s, 3H), 3.63 – 3.52 (m, 3H), 2.55 (s, 3H), 1.05 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 170.95, 166.84, 142.72, 139.26, 138.54, 137.47, 136.06, 133.88, 133.59, 129.76, 128.79, 128.73, 128.43, 128.25, 127.74, 127.26, 126.88, 126.85, 126.79, 126.77, 123.92, 66.00, 65.85, 64.91, 64.81, 54.87, 54.77, 52.12, 52.06, 42.68, 42.64, 33.49, 29.81, 29.63. **HRMS-EI**⁺ (*m/z*): calc'd for C₂₇H₃₂N₂O₃ 432.2413; found 432.2418.

1a15, 74% (combined yield)

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 172.5 mg, 74%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.25 (m, 14H), 6.96 (dd, *J* = 8.3, 3.6 Hz, 1H), 6.46 – 6.21 (m, 3H), 4.43 (ddd, *J* = 11.0, 6.9, 2.8 Hz, 1H), 3.73 – 3.64 (m, 8H), 2.56 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.93, 166.86, 166.78, 139.62, 139.60, 138.93, 138.55, 136.88, 136.09, 136.04, 133.89, 133.64, 133.59, 131.43, 130.41, 130.10, 129.77, 129.64, 128.82, 128.80, 128.75, 128.69, 128.62, 128.48, 128.43, 128.27, 127.79, 127.74, 127.40, 127.35, 127.26, 127.21, 127.06, 127.03, 126.86, 126.80, 126.78, 126.32, 126.23, 66.04, 65.98, 65.85, 64.94, 64.88, 64.82, 54.89, 54.86, 54.78,

52.07, 42.69, 42.65, 39.42, 39.00. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₀H₃₀N₂O₃ 466.2256; found 466.2263.

1a16, 77% (combined yield)

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (25:75). Yield = 191.2 mg, 77%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.40 – 7.14 (m, 13H), 6.83 – 6.69 (m, 2H), 6.36 – 6.09 (m, 4H), 4.54 (dt, *J* = 8.4, 2.9 Hz, 1H), 3.76 – 3.68 (m, 6H), 3.68 – 3.56 (m, 3H), 3.58 – 3.43 (m, 2H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.92, 166.85, 139.91, 138.86, 138.55, 136.94, 136.10, 133.62, 133.57, 130.79, 130.08, 129.69, 129.61, 128.74, 128.26, 127.77, 127.69, 127.37, 127.34, 127.22,

127.00, 126.77, 126.65, 114.02, 66.04, 65.98, 64.93, 64.88, 55.39, 54.87, 52.07, 42.64, 38.98, 38.51. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₁H₃₂N₂O₄ 496.2362; found 496.2369.

1a17, 81% (combined yield)

Prepared in 0.50 mmol scale using **General Procedure B**. Purification: Flash chromatography on silica eluting with hexane/EtOAc (15:85). Yield = 213.3 mg, 81%, 95:5 dr. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.25 (m, 6H), 7.10 – 7.02 (m, 2H), 6.71 – 6.56 (m, 4H), 6.46 – 6.20 (m, 4H), 4.45 (dt, *J* = 8.4, 2.5 Hz, 1H), 3.80 – 3.67 (m, 12H), 3.63 – 3.53 (m, 2H), 3.49 – 3.40 (m, 2H), 2.55 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 170.94, 166.93, 166.86, 149.08, 149.03, 148.55, 147.56, 139.80, 139.59, 138.91, 136.88, 136.08, 136.03, 133.61, 133.55, 132.63, 130.97, 130.32, 130.21, 129.67, 128.75, 128.28, 127.79, 127.72, 127.39, 127.23, 127.03, 127.00, 126.76, 120.58,

119.27, 111.94, 111.35, 111.17, 108.56, 66.03, 65.98, 64.93, 64.87, 56.05, 56.02, 55.94, 55.90, 54.87, 52.07, 42.64, 39.01, 38.99. **HRMS-EI**⁺ (*m/z*): calc'd for C₃₁H₃₂N₂O₄ 496.2362; found 496.2369.

References

(1) Braunstein, H.; Langevin, S.; Khim, M.; Adamson, J.; Hovenkotter, K.; Kotlarz, L.; Mansker, B.; Beng, T. K. *Org. Biomol. Chem.* **2016**, *14*, 8864.

- (2) Dar'in, D.; Bakulina, O.; Chizhova, M.; Krasavin, M. Org. Lett. 2015, 17, 3930.
- (3) Beng, T. K.; Bassler, D. P. *Tetrahedron Lett.* **2014**, *55*, 6662.
- (4) Beng, T. K.; Wilkerson-Hill, S. M.; Sarpong, R. Org. Lett. 2014, 16, 916.