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Experimental Methods
A. Determination of affinity constants
Binding affinities of the complexes to ct-DNA have been determined from absorbance and
fluorescence titrations. From the titration data the concentrations of bound and the free ligand
(C, and Cy) have been determined from the absorbance or fluorescence change at a fixed
wavelength, which usually corresponds to the wavelength of maximum changes. If Ag(or If),
Ag(or Ig), and A(I) represent the absorbance (or fluorescence) of the initially, finally, and
partially titrated ligands, respectively, then the fraction of the bound ligand molecules ay, 1s given
by

ap = [Ap(or Ir) - A(DV[Ar(IF) - Ag(Ig)] evvevennnnnn (1)
The molar concentration of free (C¢) and bound (C,) ligands molecules and r could be evaluated
from the following equations, where D and P represent the total input ligand and DNA phosphate

concentrations, respectively

Ce= (1 - (lb)D ................................ (2)
CO=0p D e, 3)
t=Cy/P=0p D/P oo, (4)

Binding data obtained from spectrophotometric titration were cast into the form of Scatchard plot
of 1/C¢ versus r, where r is the number of ligand molecules bound per mole of nucleotide. Non-
linear binding isotherms were fitted to a theoretical curve drawn according to the excluded site
model [1] for a non-linear non-cooperative ligand binding system using the following equation,

r/ Cy=K/(1-nr)[(1-nr)/{1-(n-D)r} ™! ........ ®)
where K/ is the intrinsic binding constant to an isolated binding site, and n is the number of
nucleotides excluded by the binding of a single ligand molecule. The binding data were analyzed

using the programme Origin 7.0.

B. Circular dichroic study
All circular dichroism (CD) measurements were performed with a JASCO: J-815
spectropolarimeter. To measure the circular dichoric spectra 0.1M stock solution of the

complexes was prepared in water DMSO mixture. At first a blank CD spectrum was drawn with

2



citrate phosphate buffer at pH7.4. Then CD spectra of all the three complexes were recorded in
the buffer.

C. X-Ray crystallography

Intensity diffraction data of H,L!, H,L?, and of copper(II) complexes 1, 2, and 3 were collected
at room temperature on a Bruker APEX-II CCD diffractometer with Mo-Ka monochromatic
radiation (0.71073 A). Cell refinement, indexing and scaling of the data set were done by using
programs Bruker Smart Apex and Bruker Saint packages.! All the structures were solved by
direct methods and subsequent Fourier analyses® and refined by the full-matrix least-squares
method based on F? with all observed reflections.? Hydrogen atoms were included at calculated
positions except some of the NH groups which were located on the Fourier map.

Diffraction data of H,L! were treated with SQUEEZE tool of Platon package’ to take into
account a small residual difficult to model. In H,L? the —O-Ethyl group of ethylacetate molecule
was found disordered over two positions with refined occupancies 0.751(9)/ 0.249(9). Data of
complex 1 are at low accuracy, and taking into account a perchlorate anion at 0.5 occupancy, the
proton at the NH groups was considered disordered over the two arms being the complex located
on a two-fold axis. The ClO4 anion in 3 was found disordered over two positions with refined
occupancies 0.565(10)/0.435(10). All calculations were performed using programs implemented
in the WinGX System, Ver 2018.3.4

CCDC 1990271 (H,LY), 1856436 (H,L2), 2019991 (1), 1856433 (2), and 1856434 (3) contain
the supplementary crystallographic data for this paper. These data can be obtained free of charge

from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures

1 Bruker, (2000). SMART, SAINT. Software Reference Manual Bruker AXS Inc. Madison,
Wisconsin, USA

2 (a) G. M. Sheldrick, Acta Cryst. (2015) A71, 3-8. (b) O. V. Dolomanov, L. J. Bourhis, R. J.
Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst. (2009). 42, 339-341.

3 A. L. Spek, Acta Crystallogr., (1990) A46, C-34.

4 L.J. Farrugia, J. Appl. Crystallogr. 32 (1999) 837-838.
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Figure S1. 'H NMR (300 MHz) spectrum of H,L! in DMSO-dg at 20 °C.
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Figure S2. 3C NMR (75.5 MHz) spectrum of H,L! in DMSO-d; at 20 °C.
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Figure S3. 'H NMR (300 MHz) spectrum of H,L.2 in DMSO-dg at 20 °C.
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Figure S4. 3C NMR (75.5 MHz) spectrum of H,L? in DMSO-dg at 20 °C.
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Figure S5. '"H NMR (300 MHz) spectrum of H,L3 in DMSO-dg at 20 °C.
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Figure S6. 3C NMR (75.5 MHz) spectrum of H,L?* in DMSO-d; at 20 °C.



Figure S7. Ortep diagram of H,L! (thermal ellipsoid probability at 50%)

Figure S8. Intermolecular H-bonding among H,L! molecules (Atom colors: O red, N blue, H

white).
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Figure S9. Ortep diagram of H,L? (thermal ellipsoid probability at 50%). Of the disordered

ethylacetate molecule, only one orientation is shown.

Figure S10. Intermolecular H-bonding among H,L.? molecules (Atom colors: O red, N blue, H

white).
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Figure S11. Optimized structure of H,L? molecule at theoretical DFT level calculation

(B3LYP/6-31G(d,p))

Figure S12. Ortep diagram of complex 1 (thermal ellipsoid probability at 30%)
located on a crystallographic two-fold axis. Due to the high thermal factors of the perchlorate

oxygen atoms, these are depicted as sphere of fixed radius.
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Figure S13. Ortep diagram of complex 2 (thermal ellipsoid probability at 40%). The lattice

pyridine molecule not shown for clarity.

13



Figure S14. Ortep diagram of complex 3 (thermal ellipsoid probability at 40%). Due to the high
thermal factors of the disordered perchlorate oxygen atoms, these are depicted as sphere of fixed

radius.

Unrotated form Rotated form

E =-2435.23 a.u. E =-2430.16 a.u.

Figure S15. Theoretically optimized structure of complex 2 (left) without twisting and (right)

after twisting.
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Figure S16. Theoretically optimized structure of complex 3 (left) without twisting and (right)

after twisting.
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Figure S17. Mass spectrum of complex 1
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Figure S18. Mass spectrum of complex 2
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Figure S19. Mass spectrum of complex 3
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Figure S20. CD spectra of (a) complex 1, (b) complex 2, and (¢) complex 3 in methanol
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Figure S21. UV-Vis titration of complex 1 (1 x 10-¢ M ) with increasing concentration of ct-

DNA (1860 M)
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Figure S22. (a) UV-Vis titration of complex 2 (1 x 10-° M) with increasing concentration of
ct-DNA (1860 uM); (b) Scatchard plot obtained from absorbance study
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Figure S23. Fluorescence spectra of (a) only H,L! (1 x 10® M) and after addition of Cu®* (3
equiv.) (b) only H,L? and after addition of Cu®* (3 equiv.).
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Figure S24. Fluorescence titration of complex 1 (1 x 10-® M) with increasing concentration of ct-

DNA (1860 pM).
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Figure S25. Plot of salt concentration vs free energy change for complex 2 (the blue part
indicate the nonpolyelectrolytic (AGy) and the black part the polyelectrolytic (AGy,) contribution,
respectively, to the AG binding).
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Figure S26. Plot indicating fraction of denaturation vs temperature for free DNA and 2-DNA
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Figure S27.Intrinsic CD spectra of ct-DNA (50 uM) in presence of 0, 10, 15, 20 and 25 uM of

complex 2
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Figure 28 . Van’t Hoff plot for the binding of 2 with CT-DNA.
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Table S1. H-bonding parameters of H,L!, H,L?> and complex 3.

Symmetry code

Compound D-H...A D-HA) H..AA) D..AQA) of A
H,L! NI-Hln...02 0.89(2) 1.96(2) 2.826(2)  1/2-x,1/2+y,1/2-
Ol-Hlo..N4 0.91(3) 1.81(3) 2.603(2) z
N3-H3n...03 0.95(2) 1.83(2) 2.771(2) ]
O4-H4o..N2 0.98(3) 1.86(3) 2.675(2) i
H,L2 NI-HIn..O10a  0.86 223 3.022(5) 14x,y,2
NI1-H1n...02 0.86 2.55 3.014(5) 3/2-x,1/2+y,1/2-
0O10-H10...N4 0.82 1.89 2.596(5) z
N3-H3n...03 0.86 2.01 2.840(5) -
04-H4o0...N2 0.82 1.89 2.609(5) -
Complex 3 N2-H2..06a 0.86 2.08 2.881(9) x,1/2-y,1/2+z
N2-H2..08a 0.86 2.14 2.902(14) x,1/2-y,1/2+z

Table S2. C=0 bond distances (A) in the ligands and in Cu complexes
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compound C-0 C-O0
H,L! C8-02 1.222(2) C21-03 1.233(2)
H,L2 C8-02 1.211(5) C21-03 1.234(5)

1 C13-02 1.259(10) - -
2 C16-05 1.299(4) C25-07 1.285(4)
3 C12-02 1.251(3) C25-03 1.286(2)



Table S3. CH...O interaction parameters (A/°) in Cu complexes

Complex D-H...A

1 C8-H8...02
C12-H12...01
C17-H17...05

2 C6-H6...01
C8-H8...08
C11-HI11...01
C12-H12...07
C20-H20...06
C24-H24...05

3 CI11-HI1...06
Cl16-H16...05a
C18-H18...08a
C32-H32..07a

D-H

0.93
0.93
0.93

0.93
0.93
0.93
0.93
0.93
0..93

0.85(3)

0.93
0.93
0.93

249
2.54
2.33

2.37
2.41
249
2.32
2.36
2.35

2.60(3)
2.58
2.48
2.46

D...A

2.965(19)
2.982(16)
3.182(18)

2.692(5)
2.951(4)
3.370(5)
2.896(4)
2.932(5)
2.905(5)

3.334(10)
3.303(9)
3.224(14)
3.149(15)

<D-H...A

112
110
152

100
117
158
120
120
118

145(2)
135
137
131

Symmetry
code of A

-x,1+y,1/2-z

X,1/2-y,1/2+z

X,1/2-y,1/2+z

-X,-y,1-z

Table S4. The C-N single bond distances (A) in the ligands and copper complexes

Compound bond
H,L! N3-C8
H,L? N3-C8

1 N2-C13
2 N1-C25
3 N2-C12
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C-N
1.339(3)
1.347(5)
1.324(11)
1.319(4)
1.330(3)

bond
N1-C21
N1-C21
N3-C38
N3-C25

C-N
1.334(2)
1.356(5)
1.320(4)
1.315(3)



