Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Table of contents

1. General remarks

- 1.1. Instrumentation
- 1.2. Materials and methods

2. Synthetic procedures

- 2.1. Synthesis of 2,2'-bithiophene 1
- 2.2. Synthesis of [2,2'-bithiophene]-5,5'-dicarboxylic acid **2**
- 2.3. Synthesis of 2,2'-diselanediyldianiline 4se
- 2.4. Synthesis of 2,2'-ditellanediyldianiline 4_{Te}
- 2.5. Synthesis of 2,2'-diselanediylbis(pyridin-3-amine) 6se
- 2.6. Synthesis of 2,2'-ditellanediylbis(pyridin-3-amine) 6_{Te}
- 2.7. Synthesis of 2-(methylselanyl)aniline 7c-se
- 2.8. Synthesis of 2-(methyltellanyl)aniline 7_{C-Te}
- 2.9. Synthesis of 2-(methylselanyl)pyridin-3-amine 7_{N-Se}
- 2.10. Synthesis of 2-(methyltellanyl)pyridin-3-amine 7_{N-Te}
- 2.11. Synthesis of $N^5, N^{5'}$ -bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'dicarboxamide **8**_{C-Se}
- 2.12. Synthesis of N^5, N^5 '-bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'dicarboxamide **8**_{C-Te}
- 2.13. Synthesis of $N^5, N^{5'}$ -bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide **8**_{N-Se}
- 2.14. Synthesis of N^5 , N^5 '-bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide **8**_{N-Te}
- 2.15. Synthesis of 5,5'-bis(benzo[d][1,3]selenazol-2-yl)-2,2'-bithiophene 9_{C-Se}
- 2.16. Synthesis of 5,5'-bis(benzo[d][1,3]tellurazol-2-yl)-2,2'-bithiophene 9_{C-Te}
- 2.17. Synthesis of 5,5'-bis([1,3]selenazolo[5,4- β]pyridin-2-yl)-2,2'-bithiophene **9**_{N-Se}
- 2.18. Synthesis of 5,5'-bis([1,3]tellurazolo[5,4-β]pyridin-2-yl)-2,2'-bithiophene 9_{N-Te}
- 2.19. Synthesis of 5-bromo-*N*-(2-(methyltellanyl)phenyl)thiophene-2-carboxamide 10_{C-Te}
- 2.20. Synthesis of 5-bromo-*N*-(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide 10_{N-Te}
- 2.21. Synthesis of 2-(5-bromothiophen-2-yl)benzo[d][1,3]tellurazole 11_{C-Te}
- 2.22. Synthesis of 2-(5-bromothiophen-2-yl)-[1,3]tellurazolo[5,4-β]pyridine 11_{N-Te}
- 3. ¹H and ¹³C spectra

- 4. Crystal data and structure refinement
- 5. References

1. General remarks

1.1. Instrumentation

Thin layer chromatography (TLC) was conducted on pre-coated aluminum sheets with 0.20 mm Merk Millipore Silica gel 60 with fluorescent indicator F254. Column chromatography was carried out using Merck Gerduran silica gel 60 (particle size 40-63 µm). Melting points (mp) were measured on a Gallenkamp apparatus in open capillary tubes and have not been corrected. Nuclear magnetic resonance: (NMR) spectra were recorded on a Bruker Fourier 300 MHz spectrometer equipped with a dual (¹³C, ¹H) probe, a Bruker AVANCE III HD 400MHz NMR spectrometer equipped with a Broadband multinuclear (BBFO) SmartProbe™, a Bruker AVANCE III HD 500MHz Spectrometer equipped with Broadband multinuclear (BBO) Prodigy CryoProbe or a Bruker Avance III 600 MHz NMR spectrometer equipped with an inverse QCI Cryoprobe. ¹H spectra were obtained at 300, 400, 500 or 600 MHz, ¹³C spectra were obtained at 75, 100 or 125 MHz. All spectra were obtained at room temperature. Chemical shifts were reported in ppm according to tetramethylsilane using the solvent residual signal as an internal reference (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; DMSO- d_6 : $\delta_H = 2.50$ ppm, $\delta_C = 39.52$ ppm). Coupling constants (J) were given in Hz. Resonance multiplicity was described as s (singlet), d (doublet), t (triplet), dd (doublet of doublets), ddd (doublet of doublets of doublets), td (triplet of doublets), m (multiplet) and bs (broad signal). Carbon spectra were acquired with a complete decoupling for the proton. Infrared spectra (IR) were recorded on a Shimadzu IR Affinity 1S FTIR spectrometer in ATR mode with a diamond mono-crystal. Mass spectrometry: (i) High-resolution mass spectra (HRMS) were performed on a Waters LCT HR TOF mass spectrometer in the positive ion mode. All analyses were carried out at Cardiff university. Photophysical analysis: Absorption spectra of compounds were recorded on air equilibrated solutions at room temperature with a Agilent Cary 5000 UV-Vis spectrophotometer, using quartz cells with path length of 1.0 cm. X-ray measurements: Single crystals of 9_C. se, 11_{C-Te} and 11_{N-Te} were grown by slow evaporation of CHCl₃, 9_{N-Te} from cooling down a hot solution of pxylene. Crystallographic studies were undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual three-circle diffractometer using Cu-Ka ($\lambda = 1.540598$ Å) or Mo-Ka ($\lambda = 0.7093187$ Å) radiation and a CCD detector. Measurements were typically made at 150(2) K with temperatures maintained using an Oxford Cryostream unless otherwise stated. Data were collected, integrated and corrected for absorption using a numerical absorption correction based on gaussian integration over a multifaceted crystal model within CrysAlisPro.^[1] The structures were solved by direct methods and refined against F² within SHELXL-2013.^[2]

1.2. Materials and methods

Synthesis. Chemicals were purchased from Sigma Aldrich, Acros Organics, TCI, Apollo Scientific, ABCR, Alfa Aesar, Carbosynth and Fluorochem and were used as received. Solvents were purchased from

Fluorochem, Fisher Chemical and *Sigma Aldrich*, while deuterated solvents from *Eurisotop* and *Sigma Aldrich*. THF, Et₂O and CH₂Cl₂ were dried on a Braun MB SPS-800 solvent purification system. MeOH and acetone were purchased as reagent-grade and used without further purification. CHCl₃ was distilled from CaCl₂ and stored over CaCl₂. NEt₃ was distilled from CaH₂ and then stored over KOH. Anhydrous dioxane and pyridine were purchased from *Sigma Aldrich*. Sulfuric acid (H₂SO₄ > 95%) was purchased from *Fluorochem*. Solution of iso-propyl magnesium chloride in THF was freshly prepared according to a procedure of Lin et al.^[3] and titrated with the Paquette method.^[4] Low temperature baths were prepared using different solvent mixtures depending on the desired temperature: -78 °C with acetone/dry ice, and 0 °C with ice/H₂O. Anhydrous conditions were achieved by flaming two necked flasks with a heat gun under vacuum and purging with nitrogen. The inert atmosphere was maintained using nitrogen-filled balloons equipped with a syringe and needle that was used to penetrate the silicon stoppers closing the flask's necks. Additions of liquid reagents were performed using plastic syringes. All reactions were performed in dry conditions and under inert atmosphere unless otherwise stated.

2. Synthetic procedures

2.1. Synthesis of 2,2'-bithiophene 1

In a Schlenk flask magnesium turnings (940 mg, 39 mmol) was added, then the system was dried under vacuum at 100 °C for 20 minutes and refilled with N₂. The solid was covered with dry Et₂O (40 mL) and 2bromothiophene (4.8 g, 2.9 mL, 30 mmol) was added dropwise at 0 °C. The mixture was heated to reflux and stirred for 1 hour, then added dropwise to a solution of 2-bromothiophene (4 g, 2.4 mL, 25 mmol) and Ni(dppp)Cl₂ (27 mg, 1.25 mmol) in dry Et₂O (30 mL). The reaction was heated to reflux and stirred overnight, then quenched by slow addition of water (30 mL). The aqueous phase was extracted with Et₂O (3 × 50 mL), then the combined organic extracts were washed with brine (30 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether) to give pure **1** as a white solid (2.9 g, 71% yield). m.p.: 30-31 °C (lit. 34-35 °C – from petr. ether); ¹H-NMR (300 MHz, DMSO-*d*₆) δ_{H} : 7.62 (d, *J* = 5.1 Hz, 2H, ArH), 7.48 (m, 2H, ArH), 7.34 (d, *J* = 3.9 Hz, 2H, ArH); ¹³C-NMR (75 MHz, DMSO-*d*₆) δ_{C} : 143.0 × 2, 135.5 × 2, 132.6 × 2, 127.4 × 2; Spectral properties were in agreement with those reported in the literature.^[5]

2.2. Synthesis of [2,2'-bithiophene]-5,5'-dicarboxylic acid 2

[2,2'-bithiophene]-5,5'-dicarboxylic acid **2** has been synthesized taking inspiration from the procedure of Yu et al.^[6] To a solution of 2,2'-bithiophene **1** (1.66 g, 10 mmol) in dry Et₂O (85 mL) under N₂, a solution of *n*-butyllithium (2.5 M in hexanes, 8.8 mL, 22 mmol) in dry Et₂O (10 mL) was added dropwise at -78 °C. The mixture was stirred at 0 °C for 2 hours, then the system was cooled down to -78 °C and a stream of CO₂ passed through the flask (generated by slow addition of HCl to an aqueous solution of NaHCO₃, having the resulting gas dried passing through a 95% H₂SO₄ trap and a plug of CaCl₂). The reaction was stirred at -78 °C for 2 hours, then at room temperature overnight. The formed precipitate was recovered by filtration, washed several times with Et₂O, placed in suspension in a 3% HCl solution (30 mL), then stirred at room temperature for 30 minutes and filtrated. The obtained solid was suspended in MeOH (20 mL), stirred at room temperature for 2 hours and filtrated to give pure **2** as a brown powder (935 mg, 37% yield). m.p.: > 300 °C (lit. 371 °C – from MeOH); ¹H-NMR (300 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 7.66 (d, *J* = 3.9 Hz, 2H, ArH), 7.34 (d, *J* = 3.9 Hz, 2H, ArH); ¹³C-NMR (75 MHz, DMSO-*d*₆) $\delta_{\rm C}$: 162.8 × 2, 134.4 × 2, 128.8 × 2, 126.0 × 2, 124.7 × 2; Spectral properties were in agreement with those reported in the literature.^[7]

2.3. Synthesis of 2,2'-diselanediyldianiline 4se

2,2'-diselanediyldianiline **4**_{se} has been synthesized according to the procedure of Engman et al.^[8] To a solution of 2-bromoaniline **3** (1.76 g, 10 mmol) in dry THF (50 mL) under N₂, *t*-butyllithium (1.7 M in hexanes, 17.6 mL, 30 mmol) was added dropwise at -78 °C. The reaction was stirred at -78 °C for 1 hour, then freshly grounded elemental selenium powder (780 mg, 10 mmol) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature for 1 hour, then poured into a solution of [K₃Fe(CN)₆] (3.29 g, 10 mmol) in water (180 mL) and stirred for 10 minutes. The aqueous phase was extracted with Et₂O (6 × 50 mL), then the combined organic extracts were washed with water (2 × 30 mL) and brine (2 × 30 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (cyclohexane/EtOAc 8:2) to give pure **6**_{se} as a red powder (1.4 g, 83% yield). m.p.: 83 °C (lit. 80-83 °C – from EtOH); ¹H-NMR (300 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 7.23 (d, *J* = 7.6 Hz, 2H, ArH), 7.06 (t, *J* = 7.6 Hz, 2H, ArH), 6.72 (d, *J* = 7.4 Hz, 2H, ArH), 6.41 (t, *J* = 7.4 Hz, 2H, ArH), 5.34 (bs, 4H, NH₂); ¹³C-NMR (75 MHz, DMSO-*d*₆) $\delta_{\rm C}$: 149.9 × 2, 136.8 × 2, 130.9 × 2, 116.4 × 2, 114.4 × 2, 113.1 × 2. Spectral properties were in agreement with those reported in the literature.^[9]

2.4. Synthesis of 2,2'-ditellanediyldianiline 4_{Te}

2,2'-ditellanediyldianiline 4_{Te} has been synthesized according to the procedure of Junk et al. with slight modifications.^[10] A suspension of NaH (60% in oil, 1.44 g, 60 mmol) and freshly grounded elemental tellurium powder (2.55 g, 20 mmol) in dry and degassed NMP (20 mL) under N₂ was heated to 155 °C for 30 minutes. To the resulting deep purple solution, a solution of 2-bromoaniline **3** (3.44 g, 20 mmol) in dry and degassed NMP (6 mL) was added dropwise at 155 °C, then the reaction was stirred at 185 °C for 3.5 hours. The system was allowed to cool down to room temperature and poured into a solution of NH₄Cl (3.3 g) in water (120 mL) and air bubbled through for 2 hours. The aqueous phase was extracted with Et₂O (9 × 50 mL), then the combined organic extracts were washed with water (2 × 30 mL) and brine (2 × 30 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by recrystallization (hot toluene) to give pure 4_{Te} as a deep red solid (2.08 g, 47% yield). m.p.: 101-102 °C (lit. 99-101 °C – from CHCl₃); ¹H-NMR (300 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 7.58 (d, *J* = 8.0 Hz, 2H, ArH), 7.03 (t, *J* = 7.6 Hz, 2H, ArH), 6.70 (d, *J* = 8.0 Hz, 2H, ArH), 6.38 (t, *J* = 7.6 Hz, 2H, ArH), 5.17 (bs, 4H, NH₂); ¹³C-NMR (75 MHz, DMSO-*d*₆) $\delta_{\rm C}$: 151.4 x 2, 141.6 x 2, 130.6 x 2, 117.5 x 2, 113.5 x 2, 93.8 x 2. Spectral properties were in agreement with those reported in the literature.^[10]

2.5. Synthesis of 2,2'-diselanediylbis(pyridin-3-amine) 6se

2,2'-diselanediylbis(pyridin-3-amine) 6_{Se} has been synthesized according to the procedure of Biot et al.^[11] To a solution of 3-amino-2-bromopyridine 5 (3.46 g, 20 mmol) in dry THF (20 mL) under N₂, freshly prepared *i*-propyl magnesium chloride (2.14 M, 21 mL, 44 mmol) was added dropwise at 0 °C. The reaction was stirred at room temperature for 3 hours, then freshly grounded elemental selenium powder (1.58 g, 20 mmol) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature overnight, then poured into a solution of [K₃Fe(CN)₆] (6.6 g, 20 mmol) in water (320 mL) and stirred for 10 minutes. The aqueous phase was extracted with Et₂O (6 × 50 mL), then the combined organic extracts were washed with water (2 × 30 mL) and brine (2 × 30 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH

2%) to give pure 6_{Se} as a brown powder (180 mg, 5% yield). m.p.: 189-190 °C (lit. 187-188 °C – from CHCl₃); ¹H-NMR (300 MHz, DMSO-*d*₆) δ_{H} : 7.74 (dd, *J* = 4.4, 1.6 Hz, 2H, ArH), 7.08 (dd, *J* = 8.0, 4.4 Hz, 2H, ArH), 6.99 (dd, *J* = 8.0, 1.6 Hz, 2H, ArH), 5.85 (bs, 4H, NH₂); ¹³C-NMR (75 MHz, DMSO-*d*₆) δ_{C} : 145.7 x 2, 137.4 x 2, 135.8 x 2, 124.5 x 2, 120.7 x 2. Spectral properties were in agreement with those reported in the literature.^[11]

2.6. Synthesis of 2,2'-ditellanediylbis(pyridin-3-amine) 6_{Te}

2,2'-ditellanediylbis(pyridin-3-amine) 6_{Te} has been synthesized according to the procedure of Biot et al.^[11] To a solution of 3-amino-2-bromopyridine 5 (3.46 g, 20 mmol) in dry THF (20 mL) under N₂, freshly prepared *i*-propyl magnesium chloride (1.62 M, 27 mL, 44 mmol) was added dropwise at 0 °C. The reaction was stirred at room temperature for 3 hours, then freshly grounded elemental tellurium powder (2.54 g, 20 mmol) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature for 24 hours, poured into a solution of NH₄Cl (3.3 g) in water (200 mL) and air bubbled through for 2 hours. The aqueous phase was extracted with Et₂O (9 × 50 mL), then the combined organic extracts were washed with water (2 × 30 mL) and brine (2 × 30 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 2%) to give pure **6**_{Te} as a dark red powder (554 mg, 12% yield). m.p.: 152-153 °C (lit. 153-154 °C – from CHCl₃); ¹H-NMR (300 MHz, DMSO-*d*₆) δ_{H} : 7.73 (dd, *J* = 4.3, 1.3 Hz, 2H, ArH), 7.01 (dd, *J* = 8.0, 4.3 Hz, 2H, ArH), 6.90 (dd, *J* = 8.0, 1.3 Hz, 2H, ArH), 5.71 (bs, 4H, NH₂); ¹³C-NMR (75 MHz, DMSO-*d*₆) δ_{C} : 148.1 x 2, 138.6 x 2, 124.1 x 2, 120.0 x 2, 119.0 x 2. Spectral properties were in agreement with those reported in the literature.^[11]

2.7. Synthesis of 2-(methylselanyl)aniline 7_{C-se}

To a solution of 2,2'-diselanediyldianiline 4_{Se} (1 g, 2.9 mmol) in dry and degassed THF (80 mL) under N₂, were added NaBH₄ (329 mg, 8.7 mmol) and MeOH (464 mg, 0.58 mL, 14.5 mmol). The mixture was stirred at room temperature for 75 minutes (the red colour turned orange), then MeI (904 mg, 0.4 mL, 6.4 mmol) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water (50 mL) was slowly added and the aqueous phase was extracted with Et₂O (3 × 30 mL). The combined organic extracts

were washed with brine (20 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether/CH₂Cl₂ 1:3) to give pure 7_{C-Se} as a yellow oil (1.05 g, 97% yield). ¹H-NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 7.50 (dd, J = 7.5, 1.5 Hz, 1H, ArH), 7.13 (ddd, J = 7.9, 7.5, 1.5 Hz, 1H, ArH), 6.80 (dd, J = 7.9, 1.2 Hz, 1H, ArH), 6.70 (td, J = 7.5, 1.2 Hz, 1H, ArH), 4.12 (bs, 2H, NH₂), 2.22 (s, 3H, Me); ¹³C-NMR (75 MHz, CDCl₃) $\delta_{\rm C}$: 147.0, 136.3, 129.7, 119.6, 116.2, 115.3, 8.2. Spectral properties were in agreement with those reported in the literature.^[12]

2.8. Synthesis of 2-(methyltellanyl)aniline 7_{C-Te}

To a solution of 2,2'-ditellanediyldianiline 4_{Te} (1 g, 2.3 mmol) in dry and degassed THF (63 mL) under N₂, were added NaBH₄ (261 mg, 6.9 mmol) and MeOH (368 mg, 0.47 mL, 11.5 mmol). The mixture was stirred at room temperature for 75 minutes (the dark red colour turned light orange), then MeI (718 mg, 0.31 mL, 5.1 mmol) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water (50 mL) was slowly added and the aqueous phase was extracted with Et₂O (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether/CH₂Cl₂ 1:3) to give pure 7_{C-Te} as a red oil (791 mg, 73% yield). ¹H-NMR (300 MHz, CDCl₃) δ_{H} : 7.72 (dd, *J* = 7.5, 1.5 Hz, 1H, ArH), 7.15 (td, *J* = 7.9, 1.5 Hz, 1H, ArH), 6.77 (dd, *J* = 7.9, 1.2 Hz, 1H, ArH), 6.58 (td, *J* = 7.5, 1.2 Hz, 1H, ArH), 4.28 (bs, 2H, NH₂), 2.05 (s, 3H, Me); ¹³C-NMR (75 MHz, CDCl₃) δ_{C} : 149.1, 140.8, 129.8, 118.6, 112.9, 98.7, -16.4. Spectral properties were in agreement with those reported in the literature.^[12]

2.9. Synthesis of 2-(methylselanyl)pyridin-3-amine 7_{N-Se}

To a solution of 2,2'-diselanediylbis(pyridin-3-amine) 6_{se} (300 mg, 0.87 mmol) in dry and degassed THF (20 mL) under N₂, were added NaBH₄ (100 mg, 2.62 mmol) and MeOH (140 mg, 0.18 mL, 4.35 mmol). The mixture was stirred at room temperature for 1.5 hours (the brown colour turned orange), then MeI (270 mg, 0.12 mL, 1.9 mmol) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water (20 mL) was slowly added and the aqueous phase was extracted with Et₂O (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 1%) to

give pure 7_{N-Se} as an orange oil (160 mg, 50% yield). ¹H-NMR (300 MHz, CDCl₃) δ_{H} : 7.99 (dd, J = 4.5, 1.6 Hz, 1H, ArH), 6.93 (dd, J = 7.9, 4.5 Hz, 1H, ArH), 6.87 (dd, J = 7.9, 1.6 Hz, 1H, ArH), 3.83 (bs, 2H, NH₂), 2.48 (s, 3H, Me); ¹³C-NMR (100 MHz, CDCl₃) δ_{C} : 142.4, 141.0, 140.5, 121.5, 120.4, 6.1. Spectral properties were in agreement with those reported in the literature.^[11]

2.10. Synthesis of 2-(methyltellanyl)pyridin-3-amine 7_{N-Te}

To a solution of 2,2'-ditellanediylbis(pyridin-3-amine) 6_{Te} (800 mg, 1.8 mmol) in dry and degassed THF (42 mL) under N₂, were added NaBH₄ (200 mg, 5.4 mmol) and MeOH (280 mg, 0.36 mL, 9 mmol). The mixture was stirred at room temperature for 1.5 hours (the dark red colour turned light red), then MeI (560 mg, 0.25 mL, 3.96 mmol) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water (30 mL) was slowly added and the aqueous phase was extracted with Et₂O (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 1%) to give pure 7_{N-Te} as an orange oil (649 mg, 76% yield). ¹H-NMR (300 MHz, CDCl₃) δ_{H} : 8.03 (dd, *J* = 4.5, 1.6 Hz, 1H, ArH), 6.94 (dd, *J* = 8.0, 4.5 Hz, 1H, ArH), 6.86 (dd, *J* = 8.0, 1.6 Hz, 1H, ArH), 3.85 (bs, 2H, NH₂), 2.29 (s, 3H, Me); ¹³C-NMR (75 MHz, CDCl₃) δ_{C} : 145.7, 141.8, 128.6, 122.2, 119.6, -15.5. Spectral properties were in agreement with those reported in the literature.^[11]

2.11. Synthesis of N⁵,N⁵'-bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide 8_{C-Se}

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid **2** (102 mg, 0.4 mmol) under N₂. The solid was dissolved in SOCl₂ (2.4 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP (2 mg, 0.02 mmol) in dry CHCl₃ (1.1 mL), a solution of 2- (methylselanyl)aniline 7_{C-Se} (310 mg, 0.88 mmol) and dry NEt₃ (130 mg, 0.18 mL, 1.28 mmol) in dry CHCl₃

(1 mL) was added dropwise at 0 °C. The reaction was heated to reflux and stirred for 24 hours, then water (20 mL) was added and extracted with CHCl₃ (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 0.4%) to give the desired product and the monoamide in a mixture. The obtained solid was dissolved in CHCl₃ (20 mL) and washed with a saturated solution of NaHCO₃ (3 × 20 mL), then the organic phase was dried over MgSO₄, filtered and the solvent removed under reduced pressure, to give pure **8**_{C-Se} as a brown powder (68 mg, 28% yield). m.p.: 154 °C (from CH₂Cl₂); IR (ATR) v_{max} (cm⁻¹): 3325 (w, NH), 2922 (w, Alk), 1640 (s, C=O), 1578 (m), 1516 (s), 1506 (s), 1425 (s), 1304 (s), 1234 (s), 1094 (m), 907 (w), 795 (m), 741 (s), 660 (w), 575 (w), 529 (w); ¹H-NMR (400 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 10.17 (s, 2H, O=C-NH), 7.96 (d, *J* = 3.8 Hz, 2H, ArH), 7.55 (dd, *J* = 3.8, 0.9 Hz, 2H, ArH), 7.53 – 7.46 (m, 2H, AHr), 7.34 (m, 2H, ArH) 7.31 – 7.24 (m, 4H, ArH), 2.27 (s, 6H, Me); ¹³C-NMR (100 MHz, DMSO-*d*₆) $\delta_{\rm C}$: 159.6 x 2, 140.4 x 2, 139.0 x 2, 136.2 x 2, 131.2 x 2, 130.2 x 2, 129.8 x 2, 127.4 x 2, 126.3 x 2, 126.1 x 2, 6.5 x 2 (one peak missing probably due to overlap); ESI-HRMS: [M+H]⁺ calcd for [C₂₄H₂₁N₂O₂S₂Se₂]⁺: 586.9443; found: 586.9420.

2.12. Synthesis of *N*⁵,*N*⁵'-bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide 8_{C-Te}

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid **2** (102 mg, 0.4 mmol) under N₂. The solid was dissolved in SOCl₂ (2.4 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP (2 mg, 0.02 mmol) in dry CHCl₃ (1.1 mL), a solution of 2- (methyltellanyl)aniline **7**_{C-Te} (207 mg, 0.88 mmol) and dry NEt₃ (130 mg, 0.18 mL, 1.28 mmol) in dry CHCl₃ (1 mL) was added dropwise at 0 °C. The reaction was heated to reflux and stirred for 24 hours, then water (20 mL) was added and extracted with CHCl₃ (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude material was used in the next step without further purification.

2.13. Synthesis of N⁵,N⁵'-bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide 8_{N-Se}

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid 2 (102 mg, 0.4 mmol) under N₂. The solid was dissolved in SOCl₂ (2.4 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP (2 mg, 0.02 mmol) in dry CHCl₃ (1.1 mL), a solution of 2-(methylselanyl)pyridin-3-amine 7_{N-Se} (164 mg, 0.88 mmol) and dry NEt₃ (130 mg, 0.18 mL, 1.28 mmol) in dry CHCl₃ (1 mL) was added dropwise at 0 °C. The reaction was heated to reflux and stirred for 24 hours, then water (20 mL) was added and extracted with CHCl₃ (3 × 30 mL). The combined organic extracts were washed with brine (20 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 2%) to give pure $\mathbf{8}_{N-Se}$ as a golden powder (41 mg, 18% yield). m.p.: 262-263 °C (from CH₂Cl₂); IR (ATR) v_{max} (cm⁻¹): 3252 (m, NH), 2928 (w, Alk), 2558 (w), 1921 (w), 1634 (2, C=O), 1560 (m), 1505 (s), 1449 (m), 1381 (s), 1263 (s), 1199 (m), 1101 (m), 1053 (m), 961 (w), 799 (s), 725 (s), 667 (m), 617 (m), 578 (m); ¹H-NMR (500 MHz, DMSO- d_6) $\delta_{\rm H}$: 10.32 (s, 2H, O=C-NH), 8.45 (bs, 2H, ArH), 7.99 (bs, 2H, ArH), 7.65 (d, J = 7.2 Hz, 2H, ArH), 7.59 (bs, 2H, ArH), 7.26 (s, 2H, ArH), 2.36 (s, 6H); ¹³C-NMR (125 MHz, DMSO-*d*₆) δ_C: 159.9 x 2, 154.1 x 2, 148.0 x 2, 140.6 x 2, 138.6 x 2, 135.1 x 2, 133.0 x 2, 130.6 x 2, 126.3 x 2, 120.3 x 2, 5.1 x 2; ESI-HRMS: [M+H]⁺ calcd for [C₂₂H₁₉N₄O₂S₂⁷⁶Se⁷⁷Se]⁺: 587.9341; found: 587.9347.

2.14. Synthesis of $N^5, N^{5'}$ -bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide 8_{N-Te}

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid **2** (102 mg, 0.4 mmol) under N₂. The solid was dissolved in SOCl₂ (2.4 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP (2 mg, 0.02 mmol) in dry CHCl₃ (1.1 mL), a solution of 2-

(methyltellanyl)pyridin-3-amine 7_{N-Te} (207 mg, 0.88 mmol) and dry NEt₃ (130 mg, 0.18 mL, 1.28 mmol) in dry CHCl₃ (1 mL) was added dropwise at 0 °C. The reaction was heated to reflux and stirred for 24 hours, then the obtained solid was filtered off and washed with a saturated solution of Na₂CO₃ to give pure **8**_{N-Te} as a brown solid (43 mg, 16% yield). m.p.: > 300 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 3296 (m, NH), 2931 (w, Alk), 1638 (s, C=O), 1568 (m), 1514 (s), 1464 (s), 1427 (m), 1393 (m), 1300 (w), 1262 (m), 1063 (m), 949 (w), 885 (w), 813 (m), 785 (s), 725 (s), 657 (m); ¹H-NMR (500 MHz, DMSO-*d*₆) δ_{H} : 8.14 (bs, 2H. ArH), 7.86 (bs, 2H, ArH), 7.34 (bs, 2H, ArH), 7.16 (bs, 2H, ArH), 6.86 (bs, 2H, ArH), 1.80 (s, 6H, Me); ¹³C-NMR could not be measured due to low solubility issues; ESI-HRMS: [M+H]⁺ calcd for [C₂₂H₁₉N₄O₂S₂¹²⁴Te₂]⁺: 682.9006; found: 682.9022.

2.15. Synthesis of 5,5'-bis(benzo[d][1,3]selenazol-2-yl)-2,2'-bithiophene 9_{C-Se}

To a suspension of N^5 , N^5 -bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide **8**_{C-se} (30 mg, 0.05 mmol) and NEt₃ (69 mg, 90 µL, 0.68 mmol) in dry 1,4-dioxane (3.8 mL) under N₂, a solution of POCl₃ (53 mg, 32 µL, 0.23 mmol) in dry 1,4-dioxane (0.23 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (20 mL), washed with a saturated solution of NaHCO₃ (2 × 20 mL) and the aqueous phase extracted with CHCl₃ (3 × 30 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃) to give pure **9**_{C-se} as a yellow solid (12 mg, 45% yield). m.p.: 240-243 °C (from CHCl₃): IR (ATR) v_{max} (cm⁻¹): 2920 (w), 1820 (w), 1765 (w), 1587 (w), 1479 (m), 1439 (s), 1304 (s), 1229 (m), 1193 (m), 1112 (w), 1045 (m), 903 (m), 866 (m), 793 (s), 746 (s), 718 (s), 661 (m), 542 (m), 465 (m); ¹H-NMR (600 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 8.18 (d, *J* = 7.7 Hz, 2H, ArH), 8.02 (d, *J* = 7.7 Hz, 2H, ArH), 7.94 (d, *J* = 4.0 Hz, 2H, ArH), 7.64 (d, *J* = 4.0 Hz, 2H, ArH), 7.52 (t, *J* = 7.7 Hz, 2H, ArH), 7.37 (t, *J* = 7.7 Hz, 2H, ArH); ¹³C-NMR could not be measured due to low solubility issues; ESI-HRMS: [M+H]⁺ calcd for [C₂₂H₁₃N₂S₂⁷⁷Se₂]⁺: 522.8919; found: 522.8892. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl₃ solution.

2.16. Synthesis of 5,5'-bis(benzo[d][1,3]tellurazol-2-yl)-2,2'-bithiophene 9_{C-Te}

9_{С-Те}

To a suspension of N^5 , $N^{5'}$ -bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide **8**_{C-Te} (73 mg, 0.11 mmol) and NEt₃ (134 mg, 0.17 mL, 1.32 mmol) in dry 1,4-dioxane (8 mL) under N₂, a solution of POCl₃ (101 mg, 60 µL, 0.44 mmol) in dry 1,4-dioxane (0.44 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (20 mL), washed with a saturated solution of NaHCO₃ (3 × 20 mL) and the aqueous phase extracted with CHCl₃ (5 × 30 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃) to give pure **9**_{C-Te} as a red solid (18 mg, 7% yield over two steps). m.p.: 269-270 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 2920 (w), 2355 (w), 1690 (w), 1478 (m), 1427 (m), 1306 (w), 1290 (w), 1215 (m), 1065 (w), 990 (m), 897 (m), 864 (m), 791 (s), 783 (s), 745 (s), 604 (w), 579 (w), 449 (m); ¹H-NMR (500 MHz, DMSO-*d*₀) $\delta_{\rm H}$: 8.12 (d, *J* = 7.8 Hz, 2H, ArH), 8.02 (d, *J* = 7.5 Hz, 2H, ArH), 7.93 (d, *J* = 4.0 Hz, 2H, ArH), 7.59 (d, *J* = 4.0 Hz, 2H, ArH), 7.48 – 7.44 (m, 2H, ArH), 7.19 (t, *J* = 7.5 Hz, 2H, ArH); ¹³C-NMR could not be measured due to low solubility issues; ESI-HRMS: [M+H]⁺ calcd for [C₂₂H₁₃N₂S₂¹²⁴Te₂]⁺: 616.8577; found: 616.8479. Crystal suitable for X-Ray diffraction was obtained by slow cooling of a hot solution of *p*-xylene.

2.17. Synthesis of 5,5'-bis([1,3]selenazolo[5,4-β]pyridin-2-yl)-2,2'-bithiophene 9_{N-Se}

To a suspension of N^5 , $N^{5'}$ -bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'-dicarboxamide **8**_{N-Se} (25 mg, 0.05 mmol) and NEt₃ (109 mg, 0.14 mL, 1.08 mmol) in dry 1,4-dioxane (3.2 mL) under N₂, a solution of POCl₃ (83 mg, 50 µL, 0.36 mmol) in dry 1,4-dioxane (0.36 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (10 mL), washed with a saturated solution of NaHCO₃ (3 × 20 mL) and the aqueous phase extracted with CHCl₃ (8 × 30 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure. The crude was purified by preparative TLC (CHCl₃/MeOH 3%) to give pure **9**_{N-Se} as an orange solid (6 mg, 27% yield). m.p.: 230-232 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 2922 (w), 2849 (w), 2361 (w), 1651 (w), 1573 (m), 1470 (m), 1435 (m), 1373 (m), 1307 (s), 1270 (w), 1197 (w), 1065 (m), 907 (w), 812 (m), 798 (s), 785 (s), 727 (m), 662 (m), 600 (m), 556 (w), 434 (s); ¹H-NMR (300 MHz, CDCl₃) $\delta_{\rm H}$: 8.54 – 8.51 (m, 4H, ArH), 7.82 (d, *J* = 4.0 Hz, 2H, ArH), 7.67 – 7.61 (m, 2H, ArH), 7.42 – 7.38 (m, 2H, ArH); ¹³C-NMR could not be measured due to low solubility issues; EI-HRMS: [M]⁺ calcd for [C₂₀H₁₀N₄S₂⁸⁰Se₂]⁺: 529.8677; found: 529.8675.

2.18. Synthesis of 5,5'-bis([1,3]tellurazolo[5,4-β]pyridin-2-yl)-2,2'-bithiophene 9_{N-Te}

To a suspension of N^5 , N^{51} -bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'-dicarboxamide **8**_{N-Te} (41 mg, 0.06 mmol) and NEt₃ (146 mg, 0.18 mL, 1.44 mmol) in dry 1,4-dioxane (4.7 mL) under N₂, a solution of POCl₃ (111 mg, 70 µL, 0.48 mmol) in dry 1,4-dioxane (0.48 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (20 mL), washed with a saturated solution of NaHCO₃ (3 × 20 mL) and the aqueous phase extracted with CHCl₃ (10 × 30 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 3% to 5%) to give pure **9**_{N-Te} as a red solid (20 mg, 53% yield). m.p.: 251-232 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 2922 (w), 2496 (w), 1684 (w), 1541 (w), 1460 (s), 1430 (m), 1397 (m), 1364 (s), 1260 (w), 1207 (m), 1173 (m), 1036 (s), 903 (w), 813 (w), 793 (s), 777 (s), 725 (m), 669 (w), 580 (w), 453 (m); ¹H-NMR (300 MHz, DMSO-*d*₆) $\delta_{\rm H}$: 8.51 – 8.50 (m, 2H, ArH), 8.34 – 8.32 (m, 2H, ArH), 8.08 – 8.06 (m, 2H, ArH), 7.68 – 7.66 (m, 2H, ArH), 7.58 – 7.54 (m, 2H, ArH); ¹³C-NMR could not be measured due to low solubility issues; ESI-HRMS: [M+H]⁺ calcd for [C₂₀H₁₁N₄S₂¹²⁴Te₂]⁺: 618.8482; found: 618.8479.

2.19. Synthesis of 5-bromo-N-(2-(methyltellanyl)phenyl)thiophene-2-carboxamide 10_{C-Te}

A two-necked flask was loaded with 5-bromothiophene-2-carboxylic acid (720 mg, 3.5 mmol) under N₂. The solid was dissolved in SOCl₂ (5 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride in dry CH₂Cl₂ (4 mL), a solution of 2-(methyltellanyl)aniline **7**_{C-Te} (820 mg, 3.5 mmol) and dry NEt₃ (390 mg, 0.54 mL, 3.85 mmol) in dry CH₂Cl₂ (6 mL) was added dropwise at 0 °C. The reaction stirred at 0°C for 5 minutes, then at room temperature for 3 hours. The system was diluted with EtOAc (30 mL), washed with water (20 mL) and brine (20 mL), dried over MgSO₄, filtered and the solvents removed under reduced pressure. The crude was washed with Et₂O (2 × 20 mL) to give pure **10**_{C-Te} as a beige powder (670 mg, 45% yield). m.p: 126-127 °C (from CHCl₃); IR (ATR) ν_{max} (cm⁻¹): 3219 (m, NH), 2363 (w), 1624 (s, C=O), 1530 (s), 1460 (s), 1323 (m), 1292 (m), 1225 (w), 1119 (m), 1088 (w), 974 (m), 833 (m), 797 (m), 740 (s), 708 (m), 646 (m), 576 (m), 451 (m); ¹H-NMR (400 MHz, DMSO-*d*₆) δ_{H} : 10.33 (s, 1H, O=C-NH), 7.79 (bs, 1H, ArH), 7.64 (d, *J* = 7.5 Hz, 1H, ArH), 7.38 (d, *J* = 4.0 Hz, 1H, ArH), 7.29 – 7.25 (m, 2H, ArH),

7.18 – 7.15 (m, 1H, ArH), 2.02 (s, 3H, Me); ¹³C-NMR (100 MHz, DMSO- d_6) δ_C : 159.1, 141.0, 139.4, 135.4, 131.8, 130.0, 127.4, 1273, 126.5, 117.7, 116.3, -15.8; API-HRMS: [M+H]⁺ calcd for [C₁₂H₁₁NOSBr¹²²Te]⁺: 417.8775; found: 417.8774.

2.20. Synthesis of 5-bromo-*N*-(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide 10_{N-Te}

A two-necked flask was loaded with 5-bromothiophene-2-carboxylic acid (390 mg, 1.88 mmol) under N₂. The solid was dissolved in SOCl₂ (3 mL), then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride in dry CH₂Cl₂ (3 mL), a solution of 2-(methyltellanyl)pyridin-3-amine 7_{N-Te} (370 mg, 1.57 mmol) and dry pyridine (137 mg, 0.14 mL, 1.73 mmol) in dry CH₂Cl₂ (4 mL) was added dropwise at 0 °C. The reaction was stirred at 0°C for 5 minutes, then at room temperature overnight. The system was diluted with EtOAc (30 mL), washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and the solvents removed under reduced pressure. The crude was washed with Et₂O (2 × 20 mL) to give pure **10**_N. T_e as a beige powder (290 mg, 36% yield). m.p.: 145 °C (from CHCl₃); IR (ATR) ν_{max} (cm⁻¹): 3215 (m, NH), 2980 (w, Alk), 2571 (w), 1628 (C=O), 1568 (m), 1526 (m), 1497 (s), 1410 (s), 1387 (s), 1323 (m), 1289 (m), 1063 (m), 978 (m), 812 (m), 785 (s), 725 (m), 653 (m), 586 (m); ¹H-NMR (400 MHz, DMSO-*d*₀) $\delta_{\rm H}$: 10.39 (s, 1H, ArH), 7.40 (d, *J* = 3.9 Hz, 1H, ArH), 7.23 (dd, *J* = 7.9, 4.7 Hz, 1H, ArH), 2.15 (s, 3H, Me); ¹³C-NMR (100 MHz, DMSO-*d*₀) $\delta_{\rm C}$: 159.4, 148.8, 143.3, 140.5, 137.0, 133.9, 131.9, 130.4, 120.9, 118.2, -14.7; ESI-HRMS: [M+H]⁺ calcd for [C₁₁H₁₀N₂OS⁷⁹Br¹²²Te]⁺: 418.8728; found: 418.8733.

2.21. Synthesis of 2-(5-bromothiophen-2-yl)benzo[d][1,3]tellurazole 11_{C-Te}

To a solution of 5-bromo-*N*-(2-(methyltellanyl)phenyl)thiophene-2-carboxamide 10_{C-Te} (770 mg, 1.8 mmol) and NEt₃ (1.09 g, 1.4 mL, 10.8 mmol) in dry 1,4-dioxane (36 mL) under N₂, POCl₃ (830 mg, 0.52 mL, 3.6 mmol) was added dropwise at room temperature, the reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (20 mL), washed with a saturated solution of NaHCO₃ (3 × 30 mL) and the aqueous phase extracted with CHCl₃ (3 × 50 mL). The combined organic extracts were washed with water (20

mL) and brine (20 mL), dried over MgSO₄, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 1%) to give pure **11**_{C-Te} as a yellow solid (570 mg, 81% yield). m.p.: 137-138 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 3046 (w, Ar), 1740 (w), 1578 (w), 1479 (m), 1418 (s), 1292 (s), 1206 (s), 1111 (m), 970 (m), 874 (s), 799 (m), 785 (s), 756 (m), 708 (m), 606 (w), 573 (m); ¹H-NMR (400 MHz, CDCl₃) δ_{H} : 8.10 (ddd, *J* = 8.0, 1.3, 0.4 Hz, 1H, ArH), 7.85 (ddd, *J* = 8.0, 1.3, 0.4 Hz, 1H, ArH), 7.46 – 7.43 (m, 1H, ArH), 7.18 (d, *J* = 4.0 Hz, 1H, ArH), 7.17 – 7.14 (m, 1H, ArH), 7.07 (d, *J* = 4.0 Hz, 1H, ArH); ¹³C-NMR (100 MHz, CDCl₃) δ_{C} : 161.3, 161.1, 147.3, 133.7, 131.6, 130.8, 130.5, 127.4, 126.4, 125.4, 118.0; EI-HRMS: [M]⁺ calcd for [C₁₁H₆NSBr¹³⁰Te]⁺: 392.8467; found: 392.8449. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl₃ solution.

2.22. Synthesis of 2-(5-bromothiophen-2-yl)-[1,3]tellurazolo[5,4-β]pyridine 11_{N-Te}

To a solution of 5-bromo-*N*-(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide 10_{N-Te} (325 mg, 0.77 mmol) and NEt₃ (940 mg, 1.2 mL, 9.24 mmol) in dry 1,4-dioxane (15 mL) under N₂, POCl₃ (710 mg, 0.44 mL, 3.08 mmol) was added dropwise at room temperature, the reaction was heated to reflux and stirred overnight. The mixture was diluted with CHCl₃ (20 mL), washed with a saturated solution of NaHCO₃ (3 x 30 mL) and the aqueous phase extracted with CHCl₃ (20 mL). The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over Na₂SO₄, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography (CHCl₃/MeOH 1%) to give pure 11_{N-Te} as a yellow solid (200 mg, 66% yield). m.p.: 206-207 °C (from CHCl₃); IR (ATR) v_{max} (cm⁻¹): 3061 (w, Ar), 1917 (w), 1570 (w), 1468 (m), 1362 (s), 1271 (m), 1204 (m), 1105 (m), 1053 (w), 975 (m), 791 (s), 723 (s), 656 (m), 455 (m), 430 (w); ¹H-NMR (400 MHz, CDCl₃) $\delta_{\rm H}$: 8.43 (dd, *J* = 4.6, 1.6 Hz, 1H, ArH), 8.21 (dd, *J* = 8.1, 1.6 Hz, 1H, ArH), 7.40 (dd, *J* = 8.1, 4.6 Hz, 1H, ArH), 7.25 (d, *J* = 4.0 Hz, 1H, ArH), 7.10 (d, *J* = 4.0 Hz, 1H, ArH); ¹³C-NMR (100 MHz, CDCl₃) $\delta_{\rm C}$: 165.6, 162.8, 157.1, 147.4, 146.4, 131.9, 131.2, 131.0, 122.1, 119.1; EI-HRMS: [M]⁺ calcd for [C₁₀H₅N₂SBr¹³⁰Te]⁺: 393.8419; found: 393.8405. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl₃ solution.

3. ¹H and ¹³C spectra

<u>Figure 1S</u> – 400 MHz ¹H-NMR in DMSO- d_6 of molecule 8_{C-se}.

<u>Figure 38</u> – 500 MHz ¹H-NMR in DMSO- d_6 of molecule 8_{N-Se}.

<u>Figure 5S</u> – 500 MHz ¹H-NMR in DMSO- d_6 of molecule **8**_{N-Te}.

<u>Figure 6S</u> – 600 MHz ¹H-NMR in DMSO- d_6 of **9**_{C-Se}.

<u>Figure 88</u> – 300 MHz ¹H-NMR in CDCl₃ of molecule 9_{N-Se} .

<u>Figure 98</u> – 300 MHz ¹H-NMR in DMSO- d_6 of molecule 9_{N-Te}.

<u>Figure 10S</u> – 400 MHz ¹H-NMR in DMSO- d_6 of molecule 10_{C-Te}.

<u>Figure 11S</u> – 100 MHz ¹³C-NMR in DMSO- d_6 of molecule 10_{C-Te}.

<u>Figure 128</u> – 400 MHz ¹H-NMR in DMSO- d_6 of molecule 10_{N-Te}.

<u>Figure 138</u> – 100 MHz ¹³C-NMR in DMSO- d_6 of molecule 10_{N-Te}.

Figure 14S - 400 MHz ¹H-NMR in CDCl₃ of molecule 11_{C-Te}.

<u>Figure 158</u> – 100 MHz 13 C-NMR in CDCl₃ of molecule 11_{C-Te}.

Figure 16S - 400 MHz ¹H-NMR in CDCl₃ of molecule 11_{N-Te}.

<u>Figure 178</u> – 100 MHz ¹³C-NMR in CDCl₃ of molecule 11_{N-Te} .

4. Crystal data and structure refinement

Table S1. Crystal data and structure refinement for 9_{C-Se} (1970771).

Crystal data						
$C_{12}H_7Cl_3NSSe$						
382.56	S					
Triclinic	Se S N					
P -1	9 _{C-Se}					
a = 5.9982(6) Å	$\alpha = 71.952(8)^{\circ}.$					
b = 10.1384(8) Å	$\beta = 82.221(8)^{\circ}.$					
c = 12.3690(12) Å	$\gamma = 73.411(8)^{\circ}.$					
684.50(12) Å ³						
2						
1.856 Mg/m ³						
3.459 mm ⁻¹						
374						
0.887 x 0.083 x 0.050 m	m ³					
Data collection						
150(2) K						
0.71073 Å						
3.469 to 29.843°.						
-8<=h<=8, -13<=k<=13, -16<=l<=16						
5201						
3207 [R(int) = 0.0401]						
99.7 %						
Refinement						
Gaussian						
0.994 and 0.952						
Full-matrix least-squares	s on F ²					
3207 / 0 / 163						
1.096						
$R1 = 0.0446, wR2 = 0.0^{\circ}$	767					
R1 = 0.0671, wR2 = 0.09	932					
n/a						
0.573 and -0.642 e.Å ⁻³						
	Crystal data $C_{12} H_7 Cl_3 N S Se$ 382.56 Triclinic P -1 a = 5.9982(6) Å b = 10.1384(8) Å c = 12.3690(12) Å $684.50(12) Å^3$ 2 $1.856 Mg/m^3$ $3.459 mm^{-1}$ 374 0.887 x 0.083 x 0.050 m Data collection 150(2) K 0.71073 Å $3.469 to 29.843^{\circ}$. -8 <= h <= 8, -13 <= k <= 13, 5201 3207 [R(int) = 0.0401] 99.7 % Refinement Gaussian 0.994 and $0.952Full-matrix least-squares3207 / 0 / 1631.096R1 = 0.0446, wR2 = 0.07R1 = 0.0671, wR2 = 0.07n/a0.573 and -0.642 e.Å^{-3}$					

Table S2. Crystal data and structure refinement for 9_{C-Te} (1970772).

Crystal data

$C_{22} H_{12} N_2 S_2 Te_2$						
623.66	S Te					
Monoclinic	Te S N					
$P 2_1/c$	9 _{C-Te}					
a = 20.6424(7) Å	$\alpha = 90^{\circ}.$					
b = 4.15880(10) Å	$\beta = 91.535(3)^{\circ}.$					
c = 11.6051(4) Å	$\gamma = 90^{\circ}.$					
995.91(5) Å ³						
2						
2.080 Mg/m ³						
3.150 mm ⁻¹						
588						
0.167 x 0.118 x 0.018 m	m^3					
Data collection						
150(2) K						
0.71073 Å						
3.512 to 29.713°.						
-28<=h<=27, -5<=k<=5,	-15<=l<=15					
15566						
2596 [R(int) = 0.0282]						
99.8 %						
Refinement						
Gaussian						
1.000 and 0.837						
Full-matrix least-squares	s on F^2					
2596 / 0 / 127						
1.064						
R1 = 0.0221, wR2 = 0.04	450					
R1 = 0.0319, wR2 = 0.04	491					
n/a						
0.358 and -0.386 e.Å ⁻³						
	C ₂₂ H ₁₂ N ₂ S ₂ Te ₂ 623.66 Monoclinic P 2 ₁ /c a = 20.6424(7) Å b = 4.15880(10) Å c = 11.6051(4) Å 995.91(5) Å ³ 2 2.080 Mg/m ³ 3.150 mm ⁻¹ 588 0.167 x 0.118 x 0.018 m Data collection 150(2) K 0.71073 Å 3.512 to 29.713°. -28<=h<=27, -5<=k<=5, 15566 2596 [R(int) = 0.0282] 99.8 % Refinement Gaussian 1.000 and 0.837 Full-matrix least-squares 2596 / 0 / 127 1.064 R1 = 0.0221, wR2 = 0.04 R1 = 0.0319, wR2 = 0.04 R1 = 0.0319, wR2 = 0.04					

Table S3. Crystal data and structure refinement for 11_{C-Te} (1970774).

	Crystal da	ta	
Empirical formula	C ₁₁ H ₆ Br N S Te		
Formula weight	391.74		N S Br
Crystal system	Orthorhombic		
Space group	P n a 2 ₁		Te
Unit cell dimensions	a = 11.2104(6) Å	a = 90°.	11 _{C-Te}
	b = 4.0802(2) Å	$b = 90^{\circ}$.	
	c = 48.882(3) Å	$\gamma = 90.000(6)^{\circ}.$	
Volume	2235.9(2) Å ³		
Ζ	8		
Density (calculated)	2.327 Mg/m ³		
Absorption coefficient	6.384 mm ⁻¹		
F(000)	1456		
Crystal size	0.164 x 0.108 x 0.084	4 mm ³	
	Data collect	ion	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Theta range for data collection	3.334 to 29.798°.		
Index ranges	-15<=h<=14, -5<=k<	=4, -42<=l<=66	
Reflections collected	7650		
Independent reflections	3971 [R(int) = 0.055.	3]	
Completeness to theta = 25.242°	99.9 %		
	Refinemen	nt	
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.935		
Refinement method	Full-matrix least-squ	ares on F ²	
Data / restraints / parameters	3971 / 7 / 271		
Goodness-of-fit on F ²	1.056		
Final R indices [I>2sigma(I)]	R1 = 0.0683, wR2 =	0.1513	
R indices (all data)	R1 = 0.0918, wR2 =	0.1740	
Extinction coefficient	n/a		

Largest diff. peak and hole 4.231 and -2.153 e.Å⁻³

Crystal data

Empirical formula	C_{10} H ₅ Br N ₂ S Te		
Formula weight	392.73		N S Br
Crystal system	Orthorhombic		
Space group	P b c n		N ² ¹⁰
Unit cell dimensions	a = 11.9421(6) Å	a= 90°.	I N-Te
	b = 7.2245(4) Å	b=90°.	
	c = 24.8025(11) Å	g = 90°.	
Volume	2139.85(19) Å ³		
Ζ	8		
Density (calculated)	2.438 Mg/m ³		
Absorption coefficient	6.673 mm ⁻¹		
F(000)	1456		
Crystal size	0.120 x 0.063 x 0.063	mm ³	
	Data collecti	on	
Temperature	150(2) K		
Wavelength	0.71073 Å		
Theta range for data collection	3.285 to 29.800°.		
Index ranges	-16<=h<=12, -9<=k<=	=9, -23<=l<=34	
Reflections collected	7594		
Independent reflections	2621 [R(int) = 0.0260]	
Completeness to theta = 25.242°	99.9 %		
	Refinemen	t	
Absorption correction	Gaussian		
Max. and min. transmission	1.000 and 0.728		
Refinement method	Full-matrix least-squa	res on F ²	
Data / restraints / parameters	2621 / 0 / 136		
Goodness-of-fit on F ²	1.038		
Final R indices [I>2sigma(I)]	R1 = 0.0253, wR2 = 0	0.0485	
R indices (all data)	R1 = 0.0346, wR2 = 0.0346, w	0.0516	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.549 and -0.743 e.Å ⁻	3	

5. Reference

- [1] CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014CrysAlis171 .NET)
- [2] G. M. Sheldrick, SHELX-2013: *Program for the Solution of Crystal Structures* **2013**, University of Göttingen.
- [3] W. Lin, L. Chen, P. Knochel, *Tetrahedron* **2007**, *63*, 2787-2797.
- [4] H.-S. Lin, L. A. Paquette, Synth. Commun. 1994, 24, 2503-2506.
- [5] Y. Liu, S. Xiao, Y. Qi, F. Du, Chem. Asian J. 2017, 12, 673-678.
- [6] W.-L. Yu, H. Meng, J. Pei, W. Huang, Y. Li, A. J. Heeger, *Macromolecules* 1998, 31, 4838-4844.
- [7] T. Jiu, H. Liu, L. Fu, X. He, N. Wang, Y. Li, X. Ai, D. Zhu, Chem. Phys. Lett. 2004, 398, 113-117.
- [8] L. Engman, D. Stern, I. A. Cotgreave, C. M. Andersson, J. Am. Chem. Soc. 1992, 114, 9737-9743.
- [9] S. J. Balkrishna, B. S. Bhakuni, S. Kumar, *Tetrahedron* 2011, 67, 9565-9575.
- [10] N. C. McMullen, F. R. Fronczek, T. Junk, J. Heterocycl. Chem. 2013, 50, 120-124.
- [11] N. Biot, D. Bonifazi, Chem. Eur. J. 2018, 24, 5439-5443.
- [12] A. Kremer, C. Aurisicchio, F. De Leo, B. Ventura, J. Wouters, N. Armaroli, A. Barbieri, D. Bonifazi, *Chem. Eur. J.* 2015, 21, 15377-15387.