Table of contents

1. General remarks

1.1. Instrumentation

1.2. Materials and methods

2. Synthetic procedures

2.1. Synthesis of $2,2^{\prime}$-bithiophene $\mathbf{1}$
2.2. Synthesis of [2,2'-bithiophene]-5,5'-dicarboxylic acid 2
2.3. Synthesis of $2,2^{\prime}$-diselanediyldianiline $4 \mathbf{s e}$
2.4. Synthesis of $2,2^{\prime}$-ditellanediyldianiline $\mathbf{4}_{\mathbf{T e}}$
2.5. Synthesis of $2,2^{\prime}$-diselanediylbis(pyridin-3-amine) 6se
2.6. Synthesis of 2,2 '-ditellanediylbis(pyridin-3-amine) $\mathbf{6 T e}$
2.7. Synthesis of 2-(methylselanyl)aniline $\mathbf{7 c}_{\mathrm{c} \text {-Se }}$
2.8. Synthesis of 2-(methyltellanyl)aniline $7 \mathrm{C}-\mathrm{Te}$
2.9. Synthesis of 2-(methylselanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Se}}$
2.10. Synthesis of 2-(methyltellanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Te}}$
2.11. Synthesis of $N^{5}, N^{5^{\prime}}$-bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'dicarboxamide 8c-Se
2.12. Synthesis of N^{5}, N^{5}-bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'dicarboxamide 8C-Te
2.13. Synthesis of N^{5}, N^{5}-bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide $\mathbf{8 N}_{\mathrm{N}-\mathrm{Se}}$
2.14. Synthesis of $N^{5}, N^{5^{\prime}}$-bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide $\mathbf{8 N}_{\mathrm{N}-\mathrm{Te}}$
2.15. Synthesis of 5,5 '-bis(benzo[d] $[1,3]$ selenazol-2-yl)-2,2'-bithiophene $9 \mathbf{C - S e}$
2.16. Synthesis of $5,5^{\prime}-$ bis(benzo[d] $[1,3]$ tellurazol-2-yl)-2,2'-bithiophene $9 \mathrm{C}-\mathrm{Te}$
2.17. Synthesis of 5,5 '-bis($[1,3]$ selenazolo $[5,4-\beta]$ pyridin-2-yl)-2,2'-bithiophene $\mathbf{9}_{\mathrm{N}-\mathrm{Se}}$
2.18. Synthesis of 5,5 '-bis([1,3]tellurazolo[5,4- β]pyridin-2-yl)-2,2'-bithiophene $9 \mathrm{~N}-\mathrm{Te}$
2.19. Synthesis of 5-bromo- N-(2-(methyltellanyl)phenyl)thiophene-2-carboxamide 10cTe
2.20. Synthesis of 5-bromo- N -(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide $10 \mathrm{~N}-\mathrm{Te}$
2.21. Synthesis of 2-(5-bromothiophen-2-yl)benzo[d][1,3]tellurazole $\mathbf{1 1}_{\mathbf{C - T e}}$
2.22. Synthesis of 2-(5-bromothiophen-2-yl)-[1,3]tellurazolo[5,4- β]pyridine $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra

4. Crystal data and structure refinement

5. References

1. General remarks

1.1. Instrumentation

Thin layer chromatography (TLC) was conducted on pre-coated aluminum sheets with 0.20 mm Merk Millipore Silica gel 60 with fluorescent indicator F254. Column chromatography was carried out using Merck Gerduran silica gel 60 (particle size $40-63 \mu \mathrm{~m}$). Melting points (mp) were measured on a Gallenkamp apparatus in open capillary tubes and have not been corrected. Nuclear magnetic resonance: (NMR) spectra were recorded on a Bruker Fourier 300 MHz spectrometer equipped with a dual $\left({ }^{13} \mathrm{C},{ }^{1} \mathrm{H}\right)$ probe, a Bruker AVANCE III HD 400MHz NMR spectrometer equipped with a Broadband multinuclear (BBFO) SmartProbe ${ }^{\mathrm{TM}}$, a Bruker AVANCE III HD 500 MHz Spectrometer equipped with Broadband multinuclear (BBO) Prodigy CryoProbe or a Bruker Avance III 600 MHz NMR spectrometer equipped with an inverse QCI Cryoprobe. ${ }^{1} \mathrm{H}$ spectra were obtained at $300,400,500$ or $600 \mathrm{MHz},{ }^{13} \mathrm{C}$ spectra were obtained at 75,100 or 125 MHz . All spectra were obtained at room temperature. Chemical shifts were reported in ppm according to tetramethylsilane using the solvent residual signal as an internal reference $\left(\mathrm{CDCl}_{3}: \delta_{\mathrm{H}}=7.26 \mathrm{ppm}, \delta_{\mathrm{C}}=77.16\right.$ ppm; DMSO- $\left.d_{6}: \delta_{\mathrm{H}}=2.50 \mathrm{ppm}, \delta_{\mathrm{C}}=39.52 \mathrm{ppm}\right)$. Coupling constants (J) were given in Hz. Resonance multiplicity was described as s (singlet), d (doublet), t (triplet), $d d$ (doublet of doublets), $d d d$ (doublet of doublets of doublets), $t d$ (triplet of doublets), m (multiplet) and $b s$ (broad signal). Carbon spectra were acquired with a complete decoupling for the proton. Infrared spectra (IR) were recorded on a Shimadzu IR Affinity 1S FTIR spectrometer in ATR mode with a diamond mono-crystal. Mass spectrometry: (i) High-resolution mass spectra (HRMS) were performed on a Waters LCT HR TOF mass spectrometer in the positive ion mode. All analyses were carried out at Cardiff university. Photophysical analysis: Absorption spectra of compounds were recorded on air equilibrated solutions at room temperature with a Agilent Cary 5000 UV-Vis spectrophotometer, using quartz cells with path length of $1.0 \mathrm{~cm} . \boldsymbol{X}$-ray measurements: Single crystals of $\mathbf{9 C}_{\mathrm{C}}$ Se, $\mathbf{1 1}_{\mathrm{C}-\mathrm{Te}}$ and $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$ were grown by slow evaporation of $\mathrm{CHCl}_{3}, \mathbf{9}_{\mathrm{N}-\mathrm{Te}}$ from cooling down a hot solution of p xylene. Crystallographic studies were undertaken on single crystal mounted in paratone and studied on an Agilent SuperNova Dual three-circle diffractometer using Cu-K $\alpha(\lambda=1.540598 \AA)$ or Mo-K $\alpha(\lambda=0.7093187$ \AA) radiation and a CCD detector. Measurements were typically made at $150(2) \mathrm{K}$ with temperatures maintained using an Oxford Cryostream unless otherwise stated. Data were collected, integrated and corrected for absorption using a numerical absorption correction based on gaussian integration over a multifaceted crystal model within CrysAlisPro. ${ }^{[1]}$ The structures were solved by direct methods and refined against F^{2} within SHELXL-2013. ${ }^{[2]}$

1.2. Materials and methods

Synthesis. Chemicals were purchased from Sigma Aldrich, Acros Organics, TCI, Apollo Scientific, ABCR, Alfa Aesar, Carbosynth and Fluorochem and were used as received. Solvents were purchased from

Fluorochem, Fisher Chemical and Sigma Aldrich, while deuterated solvents from Eurisotop and Sigma Aldrich. THF, $\mathrm{Et}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ were dried on a Braun MB SPS-800 solvent purification system. MeOH and acetone were purchased as reagent-grade and used without further purification. CHCl_{3} was distilled from CaCl_{2} and stored over CaCl_{2}. NEt_{3} was distilled from CaH_{2} and then stored over KOH . Anhydrous dioxane and pyridine were purchased from Sigma Aldrich. Sulfuric acid ($\mathrm{H}_{2} \mathrm{SO}_{4}>95 \%$) was purchased from Fluorochem. Solution of iso-propyl magnesium chloride in THF was freshly prepared according to a procedure of Lin et al. ${ }^{[3]}$ and titrated with the Paquette method. ${ }^{[4]}$ Low temperature baths were prepared using different solvent mixtures depending on the desired temperature: $-78^{\circ} \mathrm{C}$ with acetone/dry ice, and $0^{\circ} \mathrm{C}$ with ice $/ \mathrm{H}_{2} \mathrm{O}$. Anhydrous conditions were achieved by flaming two necked flasks with a heat gun under vacuum and purging with nitrogen. The inert atmosphere was maintained using nitrogen-filled balloons equipped with a syringe and needle that was used to penetrate the silicon stoppers closing the flask's necks. Additions of liquid reagents were performed using plastic syringes. All reactions were performed in dry conditions and under inert atmosphere unless otherwise stated.

2. Synthetic procedures

2.1. Synthesis of $\mathbf{2 , 2}$ '-bithiophene 1

1

In a Schlenk flask magnesium turnings ($940 \mathrm{mg}, 39 \mathrm{mmol}$) was added, then the system was dried under vacuum at $100{ }^{\circ} \mathrm{C}$ for 20 minutes and refilled with N_{2}. The solid was covered with $\mathrm{dry}_{\mathrm{Et}}^{2} \mathrm{O}(40 \mathrm{~mL})$ and 2bromothiophene ($4.8 \mathrm{~g}, 2.9 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was heated to reflux and stirred for 1 hour, then added dropwise to a solution of 2-bromothiophene ($4 \mathrm{~g}, 2.4 \mathrm{~mL}, 25 \mathrm{mmol}$) and $\mathrm{Ni}(\mathrm{dppp}) \mathrm{Cl}_{2}(27 \mathrm{mg}, 1.25 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(30 \mathrm{~mL})$. The reaction was heated to reflux and stirred overnight, then quenched by slow addition of water (30 mL). The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, then the combined organic extracts were washed with brine (30 mL), dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether) to give pure 1 as a white solid ($2.9 \mathrm{~g}, 71 \%$ yield). m.p.: $30-31^{\circ} \mathrm{C}$ (lit. $34-35^{\circ} \mathrm{C}-$ from petr. ether); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 7.62$ (d, $J=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.48 (m, $2 \mathrm{H}, \mathrm{ArH}$), 7.34 (d, $J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$); ${ }^{13} \mathrm{C}$-NMR (75 MHz , DMSO- d_{6}) $\delta_{\mathrm{C}}: 143.0 \times 2,135.5 \times 2,132.6 \times 2,127.4 \times 2$; Spectral properties were in agreement with those reported in the literature. ${ }^{[5]}$

2.2. Synthesis of [2,2'-bithiophene]-5,5'-dicarboxylic acid 2

2
[2,2'-bithiophene]-5,5'-dicarboxylic acid $\mathbf{2}$ has been synthesized taking inspiration from the procedure of Yu et al. ${ }^{[6]}$ To a solution of 2,2'-bithiophene $1(1.66 \mathrm{~g}, 10 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(85 \mathrm{~mL})$ under N_{2}, a solution of n butyllithium (2.5 M in hexanes, $8.8 \mathrm{~mL}, 22 \mathrm{mmol}$) in dry $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ was added dropwise at $-78{ }^{\circ} \mathrm{C}$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 hours, then the system was cooled down to $-78^{\circ} \mathrm{C}$ and a stream of CO_{2} passed through the flask (generated by slow addition of HCl to an aqueous solution of NaHCO_{3}, having the resulting gas dried passing through a $95 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ trap and a plug of CaCl_{2}). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 hours, then at room temperature overnight. The formed precipitate was recovered by filtration, washed several times with $\mathrm{Et}_{2} \mathrm{O}$, placed in suspension in a $3 \% \mathrm{HCl}$ solution $(30 \mathrm{~mL})$, then stirred at room temperature for 30 minutes and filtrated. The obtained solid was suspended in $\mathrm{MeOH}(20 \mathrm{~mL})$, stirred at room temperature for 2 hours and filtrated to give pure 2 as a brown powder ($935 \mathrm{mg}, 37 \%$ yield). m.p.: $>300^{\circ} \mathrm{C}$ (lit. $371^{\circ} \mathrm{C}-$ from $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 7.66(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.34$ (d, $\left.J=3.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{c}}: 162.8 \times 2,134.4 \times 2,128.8 \times 2,126.0 \times 2,124.7 \times 2$; Spectral properties were in agreement with those reported in the literature. ${ }^{[7]}$

2.3. Synthesis of $\mathbf{2 , 2}$ '-diselanediyldianiline $\mathbf{4 s e}_{\mathrm{se}}$

2,2'-diselanediyldianiline 4_{Se} has been synthesized according to the procedure of Engman et al. ${ }^{[8]}$ To a solution of 2-bromoaniline $3\left(1.76 \mathrm{~g}, 10 \mathrm{mmol}\right.$) in dry THF (50 mL) under N_{2}, t-butyllithium (1.7 M in hexanes, $17.6 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-78^{\circ} \mathrm{C}$ for 1 hour, then freshly grounded elemental selenium powder ($780 \mathrm{mg}, 10 \mathrm{mmol}$) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature for 1 hour, then poured into a solution of $\left[\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right](3.29 \mathrm{~g}, 10 \mathrm{mmol})$ in water $(180 \mathrm{~mL})$ and stirred for 10 minutes. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 50 \mathrm{~mL})$, then the combined organic extracts were washed with water $(2 \times$ $30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (cyclohexane/EtOAc $8: 2$) to give pure $\mathbf{6}_{\mathrm{se}}$ as a red powder $\left(1.4 \mathrm{~g}, 83 \%\right.$ yield). m.p.: $83{ }^{\circ} \mathrm{C}\left(\right.$ lit. $80-83{ }^{\circ} \mathrm{C}-$ from EtOH $) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 7.23(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.72(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $5.34\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 149.9 \times 2,136.8 \times 2,130.9 \times 2,116.4 \times 2,114.4 \times 2$, 113.1×2. Spectral properties were in agreement with those reported in the literature. ${ }^{[9]}$

2.4. Synthesis of 2,2'-ditellanediyldianiline $\mathbf{4}_{\mathbf{T e}}$

2,2'-ditellanediyldianiline $\mathbf{4}_{\mathrm{Te}}$ has been synthesized according to the procedure of Junk et al. with slight modifications. ${ }^{[10]}$ A suspension of NaH (60% in oil, $1.44 \mathrm{~g}, 60 \mathrm{mmol}$) and freshly grounded elemental tellurium powder $(2.55 \mathrm{~g}, 20 \mathrm{mmol})$ in dry and degassed NMP $(20 \mathrm{~mL})$ under N_{2} was heated to $155^{\circ} \mathrm{C}$ for 30 minutes. To the resulting deep purple solution, a solution of 2-bromoaniline $3(3.44 \mathrm{~g}, 20 \mathrm{mmol})$ in dry and degassed NMP (6 mL) was added dropwise at $155^{\circ} \mathrm{C}$, then the reaction was stirred at $185^{\circ} \mathrm{C}$ for 3.5 hours. The system was allowed to cool down to room temperature and poured into a solution of $\mathrm{NH}_{4} \mathrm{Cl}(3.3 \mathrm{~g})$ in water $(120 \mathrm{~mL})$ and air bubbled through for 2 hours. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(9 \times 50 \mathrm{~mL})$, then the combined organic extracts were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by recrystallization (hot toluene) to give pure $\mathbf{4}_{\mathrm{Te}}$ as a deep red solid ($2.08 \mathrm{~g}, 47 \%$ yield). m.p.: 101-102 ${ }^{\circ} \mathrm{C}\left(\right.$ lit. $99-101{ }^{\circ} \mathrm{C}-$ from $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 7.58(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.03(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.70$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 6.38(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.17\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right)$ $\delta_{\mathrm{C}}: 151.4 \times 2,141.6 \times 2,130.6 \times 2,117.5 \times 2,113.5 \times 2,93.8 \times 2$. Spectral properties were in agreement with those reported in the literature. ${ }^{[10]}$

2.5. Synthesis of $\mathbf{2 , 2}$ '-diselanediylbis(pyridin-3-amine) 6 se

2,2'-diselanediylbis(pyridin-3-amine) $\mathbf{6}$ se has been synthesized according to the procedure of Biot et al. ${ }^{[11]}$ To a solution of 3-amino-2-bromopyridine $5(3.46 \mathrm{~g}, 20 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ under N_{2}, freshly prepared i-propyl magnesium chloride $(2.14 \mathrm{M}, 21 \mathrm{~mL}, 44 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 3 hours, then freshly grounded elemental selenium powder ($1.58 \mathrm{~g}, 20 \mathrm{mmol}$) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature overnight, then poured into a solution of $\left[\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}\right](6.6 \mathrm{~g}, 20 \mathrm{mmol})$ in water $(320 \mathrm{~mL})$ and stirred for 10 minutes. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(6 \times 50 \mathrm{~mL})$, then the combined organic extracts were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$
$2 \%)$ to give pure $\mathbf{6}_{\text {se }}$ as a brown powder ($180 \mathrm{mg}, 5 \%$ yield). m.p.: $189-190^{\circ} \mathrm{C}$ (lit. $187-188^{\circ} \mathrm{C}-$ from CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 7.74(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.08(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH})$, $6.99(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 5.85\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}_{2}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 145.7 \mathrm{x} 2,137.4$ x $2,135.8$ x $2,124.5 \times 2,120.7 \times 2$. Spectral properties were in agreement with those reported in the literature. ${ }^{[11]}$

2.6. Synthesis of 2,2'-ditellanediylbis(pyridin-3-amine) $\mathbf{6 T e}^{\mathbf{T}}$

2,2'-ditellanediylbis(pyridin-3-amine) $\mathbf{6}_{\mathrm{Te}}$ has been synthesized according to the procedure of Biot et al. ${ }^{[11]}$ To a solution of 3-amino-2-bromopyridine $5(3.46 \mathrm{~g}, 20 \mathrm{mmol})$ in dry THF $(20 \mathrm{~mL})$ under N_{2}, freshly prepared i-propyl magnesium chloride $(1.62 \mathrm{M}, 27 \mathrm{~mL}, 44 \mathrm{mmol})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was stirred at room temperature for 3 hours, then freshly grounded elemental tellurium powder ($2.54 \mathrm{~g}, 20 \mathrm{mmol}$) was added in once while a brisk flux of nitrogen was passed through the flask. The reaction was stirred at room temperature for 24 hours, poured into a solution of $\mathrm{NH}_{4} \mathrm{Cl}(3.3 \mathrm{~g})$ in water $(200 \mathrm{~mL})$ and air bubbled through for 2 hours. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(9 \times 50 \mathrm{~mL})$, then the combined organic extracts were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(2 \times 30 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 2 \%\right)$ to give pure $\mathbf{6}_{\mathrm{Te}}$ as a dark red powder ($554 \mathrm{mg}, 12 \%$ yield). m.p.: $152-153{ }^{\circ} \mathrm{C}$ (lit. $153-154{ }^{\circ} \mathrm{C}-$ from CHCl_{3}); ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta_{\mathrm{H}}: 7.73$ (dd, $J=4.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.01 (dd, $J=8.0,4.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 6.90 (dd, $J=8.0,1.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), $5.71\left(\mathrm{bs}, 4 \mathrm{H}, \mathrm{NH}_{2}\right),{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 148.1 \times 2,138.6 \times 2,124.1$ $\times 2,120.0 \times 2,119.0 \times 2$. Spectral properties were in agreement with those reported in the literature. ${ }^{[11]}$

2.7. Synthesis of 2-(methylselanyl)aniline 7c-Se

$7_{C-S e}$

To a solution of 2, 2'-diselanediyldianiline $\mathbf{4}_{\mathrm{se}}(1 \mathrm{~g}, 2.9 \mathrm{mmol})$ in dry and degassed THF $(80 \mathrm{~mL})$ under N_{2}, were added $\mathrm{NaBH}_{4}(329 \mathrm{mg}, 8.7 \mathrm{mmol})$ and $\mathrm{MeOH}(464 \mathrm{mg}, 0.58 \mathrm{~mL}, 14.5 \mathrm{mmol})$. The mixture was stirred at room temperature for 75 minutes (the red colour turned orange), then $\operatorname{MeI}(904 \mathrm{mg}, 0.4 \mathrm{~mL}, 6.4 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water (50 mL) was slowly added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts
were washed with brine (20 mL), dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$) to give pure $\mathbf{7}_{\mathrm{C} \text {-Se }}$ as a yellow oil ($1.05 \mathrm{~g}, 97 \%$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.50(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.13$ (ddd, $J=7.9$, $7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.80(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.70(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 4.12(\mathrm{bs}, 2 \mathrm{H}$, NH_{2}), $2.22(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 147.0,136.3,129.7,119.6,116.2,115.3,8.2$. Spectral properties were in agreement with those reported in the literature. ${ }^{[12]}$

2.8. Synthesis of 2-(methyltellanyl)aniline $7_{\mathrm{C}-\mathrm{Te}}$

$7_{\text {C-Te }}$

To a solution of 2,2'-ditellanediyldianiline $\mathbf{4}_{\mathrm{Te}}(1 \mathrm{~g}, 2.3 \mathrm{mmol})$ in dry and degassed THF (63 mL) under N_{2}, were added $\mathrm{NaBH}_{4}(261 \mathrm{mg}, 6.9 \mathrm{mmol})$ and $\mathrm{MeOH}(368 \mathrm{mg}, 0.47 \mathrm{~mL}, 11.5 \mathrm{mmol})$. The mixture was stirred at room temperature for 75 minutes (the dark red colour turned light orange), then $\mathrm{MeI}(718 \mathrm{mg}, 0.31 \mathrm{~mL}, 5.1$ mmol) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water $(50 \mathrm{~mL})$ was slowly added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography (petr. ether $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 3$) to give pure $7_{\mathrm{C}-\mathrm{Te}}$ as a red oil (791 mg, 73% yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.72(\mathrm{dd}, J=7.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $7.15(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.77(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.58(\mathrm{td}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH})$, $4.28\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 2.05(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 149.1,140.8,129.8,118.6,112.9,98.7$, -16.4. Spectral properties were in agreement with those reported in the literature. ${ }^{[12]}$

2.9. Synthesis of 2-(methylselanyl)pyridin-3-amine $\mathbf{7 N}_{\mathrm{N}-\mathrm{Se}}$

$7_{\mathrm{N}-\mathrm{Se}}$

To a solution of 2,2'-diselanediylbis(pyridin-3-amine) $\mathbf{6}_{\mathbf{S e}}(300 \mathrm{mg}, 0.87 \mathrm{mmol})$ in dry and degassed THF (20 mL) under N_{2}, were added $\mathrm{NaBH}_{4}(100 \mathrm{mg}, 2.62 \mathrm{mmol})$ and $\mathrm{MeOH}(140 \mathrm{mg}, 0.18 \mathrm{~mL}, 4.35 \mathrm{mmol})$. The mixture was stirred at room temperature for 1.5 hours (the brown colour turned orange), then MeI (270 mg , $0.12 \mathrm{~mL}, 1.9 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water $(20 \mathrm{~mL})$ was slowly added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1 \%\right)$ to
give pure $7_{\mathrm{N}-\mathrm{Se}}$ as an orange oil $\left(160 \mathrm{mg}, 50 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 7.99(\mathrm{dd}, J=4.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.93(\mathrm{dd}, J=7.9,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.87(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.83\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $2.48(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 142.4,141.0,140.5,121.5,120.4,6.1$. Spectral properties were in agreement with those reported in the literature. ${ }^{[11]}$

2.10. Synthesis of 2-(methyltellanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Te}}$

$7_{\mathrm{N}-\mathrm{Te}}$

To a solution of 2,2'-ditellanediylbis(pyridin-3-amine) $\mathbf{6}_{\mathbf{T e}}(800 \mathrm{mg}, 1.8 \mathrm{mmol})$ in dry and degassed THF (42 mL) under N_{2}, were added $\mathrm{NaBH}_{4}(200 \mathrm{mg}, 5.4 \mathrm{mmol})$ and $\mathrm{MeOH}(280 \mathrm{mg}, 0.36 \mathrm{~mL}, 9 \mathrm{mmol})$. The mixture was stirred at room temperature for 1.5 hours (the dark red colour turned light red), then MeI ($560 \mathrm{mg}, 0.25$ $\mathrm{mL}, 3.96 \mathrm{mmol}$) was added. The reaction was stirred at room temperature for 1.5 hours under exclusion of light, then water $(30 \mathrm{~mL})$ was slowly added and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1 \%\right)$ to give pure $7_{\mathrm{N}-\mathrm{Te}}$ as an orange oil $\left(649 \mathrm{mg}, 76 \%\right.$ yield). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 8.03(\mathrm{dd}, J=4.5,1.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.94(\mathrm{dd}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 6.86(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 3.85\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$, $2.29(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 145.7,141.8,128.6,122.2,119.6,-15.5$. Spectral properties were in agreement with those reported in the literature. ${ }^{[11]}$

2.11. Synthesis of N^{5}, N^{5}-bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide

 8C-Se

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid $2(102 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(2.4 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(1.1 \mathrm{~mL})$, a solution of 2(methylselanyl)aniline $7_{\mathrm{C}-\mathrm{Se}}(310 \mathrm{mg}, 0.88 \mathrm{mmol})$ and dry $\mathrm{NEt}_{3}(130 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.28 \mathrm{mmol})$ in dry CHCl_{3}
$(1 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was heated to reflux and stirred for 24 hours, then water (20 $\mathrm{mL})$ was added and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 0.4 \%\right)$ to give the desired product and the monoamide in a mixture. The obtained solid was dissolved in $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$ and washed with a saturated solution of NaHCO_{3} $(3 \times 20 \mathrm{~mL})$, then the organic phase was dried over MgSO_{4}, filtered and the solvent removed under reduced pressure, to give pure $\mathbf{8}_{\mathrm{C}-\mathrm{Se}}$ as a brown powder ($68 \mathrm{mg}, 28 \%$ yield). m.p.: $154{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (ATR) $v_{\max }$ (cm^{-1}): 3325 (w, NH), 2922 (w, Alk), 1640 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$), 1578 (m), 1516 (s , 1506 (s), 1425 (s), 1304 (s), 1234 (s), 1094 (m), 907 (w), 795 (m), 741 (s), 660 (w), 575 (w), 529 (w), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta_{H}: 10.17$ ($\mathrm{s}, 2 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{NH}$), $7.96(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.55(\mathrm{dd}, J=3.8,0.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.53-7.46(\mathrm{~m}, 2 \mathrm{H}$, AHr), $7.34(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 2.27(\mathrm{~s}, 6 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}$: $159.6 \times 2,140.4 \times 2,139.0 \times 2,136.2 \times 2,131.2 \times 2,130.2 \times 2,129.8 \times 2,127.4 \times 2,126.3 \times 2,126.1 \times 2,6.5$ x 2 (one peak missing probably due to overlap); ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Se}_{2}\right]^{+}$: 586.9443; found: 586.9420.

2.12. Synthesis of N^{5}, N^{5}-bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide

 8C-Te

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid $2(102 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(2.4 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(1.1 \mathrm{~mL})$, a solution of 2(methyltellanyl)aniline $7_{\mathrm{C}-\mathrm{Te}}(207 \mathrm{mg}, 0.88 \mathrm{mmol})$ and dry $\mathrm{NEt}_{3}(130 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.28 \mathrm{mmol})$ in dry CHCl_{3} $(1 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was heated to reflux and stirred for 24 hours, then water (20 $\mathrm{mL})$ was added and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude material was used in the next step without further purification.
2.13. Synthesis of $\quad N^{5}, N^{5}-$ bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'-
dicarboxamide $8 \mathrm{~N}-\mathrm{Se}$

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid 2 ($102 \mathrm{mg}, 0.4 \mathrm{mmol}$) under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(2.4 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(1.1 \mathrm{~mL})$, a solution of 2-(methylselanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Se}}(164 \mathrm{mg}, 0.88 \mathrm{mmol})$ and dry $\mathrm{NEt}_{3}(130 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.28 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was heated to reflux and stirred for 24 hours, then water $(20 \mathrm{~mL})$ was added and extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 2 \%\right)$ to give pure $\mathbf{8}_{\mathrm{N}-\mathrm{Se}}$ as a golden powder (41 mg , 18% yield). m.p.: $262-263{ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); IR (ATR) $\nu_{\max }\left(\mathrm{cm}^{-1}\right): 3252(\mathrm{~m}, \mathrm{NH}), 2928$ (w, Alk), $2558(\mathrm{w})$, 1921 (w), 1634 (2, C=O), 1560 (m), 1505 (s), 1449 (m), 1381 (s), 1263 (s), 1199 (m), 1101 (m), 1053 (m), 961 (w), 799 (s), 725 (s), 667 (m), 617 (m), 578 (m); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 10.32$ (s, 2H, O=C-NH), 8.45 (bs, 2H, ArH), 7.99 (bs, 2H, ArH), 7.65 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}$), 7.59 (bs, 2H, ArH), 7.26 (s, 2H, ArH), $2.36(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 159.9 \times 2,154.1 \times 2,148.0 \times 2,140.6 \times 2,138.6 \times 2,135.1$ $\times 2,133.0 \times 2,130.6 \times 2,126.3 \times 2,120.3 \times 2,5.1 \times 2$; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{76} \mathrm{Se}^{77} \mathrm{Se}^{+}\right.$: 587.9341; found: 587.9347.
2.14. Synthesis of $\quad N^{5}, N^{5}$-bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'dicarboxamide $\mathbf{8 N}_{\mathrm{N}-\mathrm{Te}}$

A two-necked flask was loaded with [2,2'-bithiophene]-5,5'-dicarboxylic acid $2(102 \mathrm{mg}, 0.4 \mathrm{mmol})$ under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(2.4 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) in dry $\mathrm{CHCl}_{3}(1.1 \mathrm{~mL})$, a solution of 2-
(methyltellanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Te}}(207 \mathrm{mg}, 0.88 \mathrm{mmol})$ and dry $\mathrm{NEt}_{3}(130 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.28 \mathrm{mmol})$ in dry $\mathrm{CHCl}_{3}(1 \mathrm{~mL})$ was added dropwise at $0^{\circ} \mathrm{C}$. The reaction was heated to reflux and stirred for 24 hours, then the obtained solid was filtered off and washed with a saturated solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to give pure $\mathbf{8}_{\mathrm{N}-\mathrm{Te}}$ as a brown solid ($43 \mathrm{mg}, 16 \%$ yield). m.p.: $>300{ }^{\circ} \mathrm{C}\left(\right.$ from CHCl_{3}); IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3296(\mathrm{~m}, \mathrm{NH}), 2931(\mathrm{w}$, Alk), 1638 (s, C=O), 1568 (m), 1514 (s), 1464 (s), 1427 (m), 1393 (m), 1300 (w), 1262 (m), 1063 (m), 949 (w), 885 (w), 813 (m), 785 (s), 725 (s), 657 (m); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 8.14$ (bs, 2H. ArH), 7.86 (bs, 2H, ArH), 7.34 (bs, $2 \mathrm{H}, \mathrm{ArH}$), 7.16 (bs, $2 \mathrm{H}, \mathrm{ArH}$), 6.86 (bs, $2 \mathrm{H}, \mathrm{ArH}$), 1.80 (s, $6 \mathrm{H}, \mathrm{Me}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ could not be measured due to low solubility issues; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{124} \mathrm{Te}_{2}\right]^{+}$: 682.9006; found: 682.9022 .

2.15. Synthesis of 5,5'-bis(benzo[d][1,3]selenazol-2-yl)-2,2'-bithiophene $\mathbf{9}^{\text {C-Se }}$

To a suspension of $N^{5}, N^{5^{\prime}}$-bis(2-(methylselanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide $\mathbf{8}_{\mathrm{C}-\mathrm{Se}}$ (30 mg , 0.05 mmol) and $\mathrm{NEt}_{3}(69 \mathrm{mg}, 90 \mu \mathrm{~L}, 0.68 \mathrm{mmol})$ in dry 1,4 -dioxane (3.8 mL) under N_{2}, a solution of POCl_{3} ($53 \mathrm{mg}, 32 \mu \mathrm{~L}, 0.23 \mathrm{mmol}$) in dry 1,4-dioxane (0.23 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(2 \times 20 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(3 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3}\right)$ to give pure $9^{\mathbf{C}-\mathrm{Se}}$ as a yellow solid ($12 \mathrm{mg}, 45 \%$ yield). m.p.: $240-243{ }^{\circ} \mathrm{C}\left(\right.$ from CHCl_{3}): IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right)$: 2920 (w), 1820 (w), 1765 (w), 1587 (w), 1479 (m), 1439 (s), 1304 (s), 1229 (m), 1193 (m), 1112 (w), 1045 (m), 903 (m), 866 (m), 793 (s), 746 (s), 718 (s), 661 (m), 542 (m), 465 (m), ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta_{\mathrm{H}}: 8.18(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.94(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.64(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.52(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ could not be measured due to low solubility issues; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}_{2}{ }^{77} \mathrm{Se}_{2}\right]^{+}$: 522.8919; found: 522.8892. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl_{3} solution.

2.16. Synthesis of 5,5'-bis(benzo[d][1,3]tellurazol-2-yl)-2,2'-bithiophene 9C-Te

To a suspension of $N^{5}, N^{5^{\prime}}$-bis(2-(methyltellanyl)phenyl)-[2,2'-bithiophene]-5,5'-dicarboxamide $\mathbf{8}_{\mathbf{C}-\mathrm{Te}}$ (73 mg, $0.11 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(134 \mathrm{mg}, 0.17 \mathrm{~mL}, 1.32 \mathrm{mmol})$ in dry 1,4-dioxane (8 mL) under N_{2}, a solution of POCl_{3} ($101 \mathrm{mg}, 60 \mu \mathrm{~L}, 0.44 \mathrm{mmol}$) in dry 1,4-dioxane $(0.44 \mathrm{~mL}$) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(5 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3}\right)$ to give pure $\mathbf{9}_{\mathrm{C}-\mathrm{Te}}$ as a red solid ($18 \mathrm{mg}, 7 \%$ yield over two steps). m.p.: 269-270 ${ }^{\circ} \mathrm{C}$ (from CHCl_{3}); IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 2920(\mathrm{w}), 2355(\mathrm{w}), 1690(\mathrm{w}), 1478(\mathrm{~m}), 1427(\mathrm{~m}), 1306$ (w), 1290 (w), 1215 (m), 1065 (w), 990 (m), 897 (m), 864 (m), 791 (s$), 783$ (s$), 745$ (s$), 604$ (w), 579 (w), 449 (m); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$ $\delta_{\mathrm{H}}: 8.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 8.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.93(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.59(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ could not be measured due to low solubility issues; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{22} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{~S}_{2}{ }^{124} \mathrm{Te}_{2}\right]^{+}: 616.8577$; found: 616.8479. Crystal suitable for X-Ray diffraction was obtained by slow cooling of a hot solution of p-xylene.

2.17. Synthesis of 5,5'-bis([1,3]selenazolo[5,4- β]pyridin-2-yl)-2,2'-bithiophene $\mathbf{9}_{\mathrm{N}-\mathrm{Se}}$

To a suspension of $N^{5}, N^{5^{\prime}}$-bis(2-(methylselanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'-dicarboxamide $\mathbf{8}_{\mathrm{N}-\mathrm{Se}}$ (25 $\mathrm{mg}, 0.05 \mathrm{mmol})$ and $\mathrm{NEt}_{3}(109 \mathrm{mg}, 0.14 \mathrm{~mL}, 1.08 \mathrm{mmol})$ in dry 1,4-dioxane (3.2 mL) under N_{2}, a solution of $\mathrm{POCl}_{3}(83 \mathrm{mg}, 50 \mu \mathrm{~L}, 0.36 \mathrm{mmol})$ in dry 1,4-dioxane (0.36 mL) was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(8 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water (20 mL) and brine (20 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The crude was purified by preparative $\mathrm{TLC}\left(\mathrm{CHCl}_{3} / \mathrm{MeOH}\right.$ 3%) to give pure $\mathbf{9}_{\mathrm{N}-\mathrm{Se}}$ as an orange solid ($6 \mathrm{mg}, 27 \%$ yield). m.p.: $230-232{ }^{\circ} \mathrm{C}\left(\right.$ from CHCl_{3}); IR (ATR) $v_{\max }$ (cm^{-1}): 2922 (w), 2849 (w), 2361 (w), 1651 (w), 1573 (m), 1470 (m), 1435 (m), 1373 (m), 1307 (s$), 1270$ (w), 1197 (w), 1065 (m), 907 (w), 812 (m), 798 (s), 785 (s), 727 (m), 662 (m), 600 (m), 556 (w), 434 (s); ${ }^{1} H-N M R$ ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta_{\mathrm{H}}: 8.54-8.51(\mathrm{~m}, 4 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArH}), 7.67-7.61(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$, $7.42-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ could not be measured due to low solubility issues; EI-HRMS: $[\mathrm{M}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{80} \mathrm{Se}_{2}\right]^{+}: 529.8677$; found: 529.8675 .
2.18. Synthesis of $\mathbf{5 , 5} \mathbf{5}^{\prime}$-bis([1,3]tellurazolo[5,4- $\left.\beta\right]$ pyridin-2-yl)-2,2'-bithiophene $\mathbf{9}_{\mathrm{N}-\mathrm{Te}}$

To a suspension of N^{5}, N^{51}-bis(2-(methyltellanyl)pyridin-3-yl)-[2,2'-bithiophene]-5,5'-dicarboxamide $\mathbf{8}_{\text {N-Te }}$ (41 $\mathrm{mg}, 0.06 \mathrm{mmol}$) and $\mathrm{NEt}_{3}\left(146 \mathrm{mg}, 0.18 \mathrm{~mL}, 1.44 \mathrm{mmol}\right.$) in dry 1,4-dioxane (4.7 mL) under N_{2}, a solution of $\mathrm{POCl}_{3}(111 \mathrm{mg}, 70 \mu \mathrm{~L}, 0.48 \mathrm{mmol})$ in dry 1,4-dioxane $(0.48 \mathrm{~mL})$ was added dropwise at room temperature. The reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 20 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(10 \times 30 \mathrm{~mL})$. The combined organic extracts were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography ($\mathrm{CHCl}_{3} / \mathrm{MeOH} 3 \%$ to 5%) to give pure $\mathbf{9}_{\mathrm{N} \text {-Te }}$ as a red solid ($20 \mathrm{mg}, 53 \%$ yield). m.p.: $251-232{ }^{\circ} \mathrm{C}$ (from CHCl_{3}); IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 2922$ (w), 2496 (w), 1684 (w), 1541 (w), 1460 (s), 1430 (m), 1397 (m), 1364 (s), 1260 (w), 1207 (m), 1173 (m), 1036 (s), 903 (w), 813 (w), 793 (s), 777 (s), 725 (m), 669 (w), 580 (w), 453 (m); ${ }^{1} \mathrm{H}-$ NMR (300 MHz, DMSO- d_{6}) $\delta_{\mathrm{H}}: 8.51-8.50(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.34-8.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 8.08$ - $8.06(\mathrm{~m}, 2 \mathrm{H}$, ArH), $7.68-7.66(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ could not be measured due to low solubility issues; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{~S}_{2}{ }^{124} \mathrm{Te}_{2}\right]^{+}: 618.8482$; found: 618.8479.

2.19. Synthesis of 5-bromo- N -(2-(methyltellanyl)phenyl)thiophene-2-carboxamide $\mathbf{1 0}_{\mathrm{C}-\mathrm{Te}}$

10^{C}-Te

A two-necked flask was loaded with 5-bromothiophene-2-carboxylic acid ($720 \mathrm{mg}, 3.5 \mathrm{mmol}$) under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(5 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, a solution of 2-(methyltellanyl)aniline $7_{\mathrm{c} \text {-Te }}(820 \mathrm{mg}, 3.5$ $\mathrm{mmol})$ and dry $\mathrm{NEt}_{3}(390 \mathrm{mg}, 0.54 \mathrm{~mL}, 3.85 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, then at room temperature for 3 hours. The system was diluted with EtOAc (30 mL), washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over MgSO_{4}, filtered and the solvents removed under reduced pressure. The crude was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ to give pure $\mathbf{1 0}_{\mathrm{C}-\mathrm{Te}}$ as a beige powder ($670 \mathrm{mg}, 45 \%$ yield). m.p: $126-127^{\circ} \mathrm{C}$ (from CHCl_{3}); IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right.$): 3219 (m, NH), 2363 (w), 1624 (s, C=O), 1530 (s , 1460 (s$), 1323$ (m), 1292 (m), 1225 (w), 1119 (m), 1088 (w$), 974$ (m), 833 (m), 797 (m), 740 (s), $708(\mathrm{~m}), 646(\mathrm{~m}), 576(\mathrm{~m}), 451(\mathrm{~m})$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{H}}: 10.33(\mathrm{~s}, 1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{NH}), 7.79$ (bs, 1H, ArH), 7.64 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.38(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.29-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{ArH})$,
$7.18-7.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 2.02(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 159.1,141.0,139.4,135.4$, 131.8, 130.0, 127.4, 1273, 126.5, 117.7, 116.3, -15.8; API-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{NOSBr}^{122} \mathrm{Te}^{+}\right.$: 417.8775; found: 417.8774.

2.20. Synthesis of 5-bromo- N-(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide 10 N -

 Te

A two-necked flask was loaded with 5-bromothiophene-2-carboxylic acid ($390 \mathrm{mg}, 1.88 \mathrm{mmol}$) under N_{2}. The solid was dissolved in $\mathrm{SOCl}_{2}(3 \mathrm{~mL})$, then the mixture was heated to reflux and stirred overnight. The system was allowed to cool down to room temperature and the solvent was removed under vacuum. To a solution of the resulting acyl chloride in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, a solution of 2-(methyltellanyl)pyridin-3-amine $7_{\mathrm{N}-\mathrm{Te}}$ (370 $\mathrm{mg}, 1.57 \mathrm{mmol})$ and dry pyridine ($137 \mathrm{mg}, 0.14 \mathrm{~mL}, 1.73 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise at $0{ }^{\circ} \mathrm{C}$. The reaction was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, then at room temperature overnight. The system was diluted with EtOAc $(30 \mathrm{~mL})$, washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvents removed under reduced pressure. The crude was washed with $\mathrm{Et}_{2} \mathrm{O}(2 \times 20 \mathrm{~mL})$ to give pure $\mathbf{1 0}_{\mathrm{N}}$ Te as a beige powder ($290 \mathrm{mg}, 36 \%$ yield). m.p.: $145{ }^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}\right)$; IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3215(\mathrm{~m}, \mathrm{NH})$, 2980 (w, Alk), 2571 (w), 1628 (C=O), 1568 (m), 1526 (m), 1497 (s), 1410 (s), 1387 (s$), 1323$ (m), 1289 (m), 1063 (m), 978 (m), 812 (m), 785 (s), 725 (m), 653 (m), 586 (m); ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}, \text { DMSO-d })_{6} \delta_{\mathrm{H}: ~} 10.39$ (s, $1 \mathrm{H}, \mathrm{O}=\mathrm{C}-\mathrm{NH}), 8.45(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.82(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.54(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.23(\mathrm{dd}, J=7.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 2.15(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta_{\mathrm{C}}: 159.4,148.8,143.3,140.5,137.0,133.9,131.9,130.4,120.9,118.2,-14.7$; ESI-HRMS: $[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}^{79} \mathrm{Br}^{122} \mathrm{Te}\right]^{+}$: 418.8728; found: 418.8733 .

2.21. Synthesis of 2-(5-bromothiophen-2-yl)benzo[d][1,3]tellurazole 11c-Te

To a solution of 5-bromo- N -(2-(methyltellanyl)phenyl)thiophene-2-carboxamide $\mathbf{1 0}_{\mathrm{C}-\mathrm{Te}}$ ($770 \mathrm{mg}, 1.8 \mathrm{mmol}$) and $\mathrm{NEt}_{3}(1.09 \mathrm{~g}, 1.4 \mathrm{~mL}, 10.8 \mathrm{mmol})$ in dry 1,4-dioxane $(36 \mathrm{~mL})$ under $\mathrm{N}_{2}, \mathrm{POCl}_{3}(830 \mathrm{mg}, 0.52 \mathrm{~mL}, 3.6$ mmol) was added dropwise at room temperature, the reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 30 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with water (20
mL) and brine (20 mL), dried over MgSO_{4}, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1 \%\right)$ to give pure $\mathbf{1 1}_{\mathrm{C}-\mathrm{Te}}$ as a yellow solid (570 mg , 81% yield). m.p.: $137-138^{\circ} \mathrm{C}\left(\right.$ from $\left.\mathrm{CHCl}_{3}\right)$; IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3046$ (w, Ar), $1740(\mathrm{w}), 1578$ (w), 1479 (m), 1418 (s), 1292 (s), 1206 (s), 1111 (m), 970 (m), 874 (s), 799 (m), 785 (s), 756 (m), 708 (m), 606 (w), 573 (m); ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 8.10$ (ddd, $\left.J=8.0,1.3,0.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}\right), 7.85$ (ddd, $J=8.0,1.3,0.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{ArH}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.18(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.17-7.14(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArH}), 7.07(\mathrm{~d}, J=4.0$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 161.3,161.1,147.3,133.7,131.6,130.8,130.5,127.4,126.4$, 125.4, 118.0; EI-HRMS: [M] ${ }^{+}$calcd for $\left[\mathrm{C}_{11} \mathrm{H}_{6} \mathrm{NSBr}^{130} \mathrm{Te}\right]^{+}: 392.8467$; found: 392.8449. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl_{3} solution.

2.22. Synthesis of 2-(5-bromothiophen-2-yl)-[1,3]tellurazolo[5,4- β]pyridine $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$

To a solution of 5-bromo- N-(2-(methyltellanyl)pyridin-3-yl)thiophene-2-carboxamide $\mathbf{1 0}_{\mathrm{N}-\mathrm{Te}}$ ($325 \mathrm{mg}, 0.77$ $\mathrm{mmol})$ and $\mathrm{NEt}_{3}(940 \mathrm{mg}, 1.2 \mathrm{~mL}, 9.24 \mathrm{mmol})$ in dry 1,4-dioxane (15 mL) under $\mathrm{N}_{2}, \mathrm{POCl}_{3}(710 \mathrm{mg}, 0.44$ $\mathrm{mL}, 3.08 \mathrm{mmol}$) was added dropwise at room temperature, the reaction was heated to reflux and stirred overnight. The mixture was diluted with $\mathrm{CHCl}_{3}(20 \mathrm{~mL})$, washed with a saturated solution of $\mathrm{NaHCO}_{3}(3 \times 30$ $\mathrm{mL})$ and the aqueous phase extracted with $\mathrm{CHCl}_{3}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with water $(20 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent removed under reduced pressure. The crude was purified by silica gel chromatography $\left(\mathrm{CHCl}_{3} / \mathrm{MeOH} 1 \%\right)$ to give pure $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$ as a yellow solid ($200 \mathrm{mg}, 66 \%$ yield). m.p.: $206-207^{\circ} \mathrm{C}\left(f r o m \mathrm{CHCl}_{3}\right.$); IR (ATR) $v_{\max }\left(\mathrm{cm}^{-1}\right): 3061$ (w, Ar), 1917 (w), 1570 (w), 1468 (m), 1362 (s), 1271 (m), 1204 (m), 1105 (m), 1053 (w), 975 (m), 791 (s), 723 (s), 656 (m), $455(\mathrm{~m}), 430(\mathrm{w}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{H}}: 8.43(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 8.21(\mathrm{dd}, J=8.1$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.40(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.25(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArH}), 7.10(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{ArH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta_{\mathrm{C}}: 165.6,162.8,157.1,147.4,146.4,131.9,131.2,131.0,122.1,119.1$; EI-HRMS: [M] ${ }^{+}$calcd for $\left[\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{SBr}^{130} \mathrm{Te}\right]^{+}$: 393.8419 ; found: 393.8405. Crystal suitable for X-Ray diffraction was obtained by slow evaporation of solvent from a CHCl_{3} solution.

3. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra

Figure 1S $-400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{8 c}_{\mathrm{c} \text {-Se. }}$

Figure 2S $-100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{8 C}_{\mathrm{C} \text {-se }}$.

Figure $3 \mathrm{~S}-500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{8 N}_{\mathrm{N}-\text {-se. }}$.

Figure $\mathbf{4 S}-125 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{8}_{\mathrm{N}-\mathrm{Se}}$.

Figure $\mathbf{5 S}-500 \mathrm{MHz}^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{8}_{\mathrm{N}-\mathrm{Te}}$.

Figure $\mathbf{6 S}-600 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of 9 C -Se.

Figure $7 \mathbf{7 S}-500 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{9}_{\mathrm{C} \text {-Te }}$.

Figure $\mathbf{8 S}-300 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3} of molecule $\mathbf{9}_{\mathrm{N} \text {-se }}$.

Figure 9S $-300 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{9}_{\mathrm{N} \text {-Te }}$.

Figure $10 \mathrm{~S}-400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{1 0}_{\mathrm{C} \text {-Te. }}$.

10C-Te

Figure 11S - $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{1 0}_{\mathrm{c} \text {-Te }}$.

Figure 12S $-400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{1 0}_{\mathrm{N}-\mathrm{Te}}$.

Figure 13S - $100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in DMSO- d_{6} of molecule $\mathbf{1 0}_{\mathrm{N}-\mathrm{Te}}$.

Figure $14 \mathrm{~S}-400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3} of molecule $\mathbf{1 1}_{\mathrm{C}-\mathrm{Te}}$.

$\underline{\text { Figure } 15 S}-100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3} of molecule $\mathbf{1 1 C - T e}^{\mathbf{C}}$.

Figure $\mathbf{1 6 S}-400 \mathrm{MHz}{ }^{1} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3} of molecule $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$.

Figure $\mathbf{1 7 S}-100 \mathrm{MHz}{ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3} of molecule $\mathbf{1 1}_{\mathrm{N}-\mathrm{T} \text { e. }}$.

4. Crystal data and structure refinement

Table S1. Crystal data and structure refinement for $\mathbf{9} \mathbf{C - S e}$ (1970771).

Crystal data

Empirical formula
Formula weight
Crystal system
Space group
Unit cell dimensions

Volume
$\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Cl}_{3} \mathrm{~N} \mathrm{~S} \mathrm{Se}$
382.56

Triclinic
P-1

$9^{\mathrm{C}-\mathrm{Se}}$
$\mathrm{a}=5.9982(6) \AA \quad \alpha=71.952(8)^{\circ}$.
$b=10.1384(8) \AA \quad \beta=82.221(8)^{\circ}$.
$\mathrm{c}=12.3690(12) \AA \quad \gamma=73.411(8)^{\circ}$.

Z
Density (calculated)
Absorption coefficient
F(000)
$684.50(12) \AA^{3}$
2
$1.856 \mathrm{Mg} / \mathrm{m}^{3}$
$3.459 \mathrm{~mm}^{-1}$

Crystal size
$0.887 \times 0.083 \times 0.050 \mathrm{~mm}^{3}$

Data collection

Temperature
150(2) K
Wavelength
Theta range for data collection
Index ranges
Reflections collected
$0.71073 \AA$
3.469 to 29.843°.
$-8<=\mathrm{h}<=8,-13<=\mathrm{k}<=13,-16<=\mathrm{l}<=16$
5201
Independent reflections
3207 [$\mathrm{R}(\mathrm{int})=0.0401]$
Completeness to theta $=25.242^{\circ}$
99.7 \%

Refinement

Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

Gaussian
0.994 and 0.952

Full-matrix least-squares on F^{2}
3207 / 0 / 163
1.096

RI $=0.0446, w R 2=0.0767$
RI $=0.0671, w R 2=0.0932$
n/a
0.573 and -0.642 e. \AA^{-3}

Table S2. Crystal data and structure refinement for $\mathbf{9 C}_{\mathbf{C}-\mathrm{Te}}$ (1970772).

Crystal data

Refinement

Absorption correction

Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Gaussian
1.000 and 0.837

Full-matrix least-squares on F^{2}
2596/0/127
1.064

Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
$\mathrm{R} 1=0.0221, \mathrm{wR} 2=0.0450$

Extinction coefficient
$\mathrm{R} 1=0.0319, \mathrm{wR} 2=0.0491$

Largest diff. peak and hole
0.358 and -0.386 e. \AA^{-3}

Table S3. Crystal data and structure refinement for 11C-Te (1970774).

Crystal data

Refinement

Absorption correction

Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Gaussian
1.000 and 0.935

Full-matrix least-squares on F^{2}
3971/7/271
1.056

Extinction coefficient
$\mathrm{R} 1=0.0683, \mathrm{wR} 2=0.1513$
$\mathrm{R} 1=0.0918, \mathrm{wR} 2=0.1740$

Largest diff. peak and hole
4.231 and -2.153 e. \AA^{-3}

Table S4. Crystal data and structure refinement for $\mathbf{1 1}_{\mathrm{N}-\mathrm{Te}}$ (1970773).

Crystal data

Empirical formula	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{Br} \mathrm{N}_{2} \mathrm{~S} \mathrm{Te}$	
Formula weight	392.73	
Crystal system	Orthorhombic	
Space group	Pbcn	
Unit cell dimensions	$a=11.9421(6) \AA \quad a=90^{\circ}$.	
	$\mathrm{b}=7.2245(4) \AA \quad \mathrm{d}=90^{\circ}$.	
	$\mathrm{c}=24.8025(11) \AA \quad \mathrm{g}=90^{\circ}$.	
Volume	$2139.85(19) \AA^{3}$	
Z	8	
Density (calculated)	$2.438 \mathrm{Mg} / \mathrm{m}^{3}$	
Absorption coefficient	$6.673 \mathrm{~mm}^{-1}$	
F(000)	1456	
Crystal size	$0.120 \times 0.063 \times 0.063 \mathrm{~mm}^{3}$	
	Data collection	
Temperature	150(2) K	
Wavelength	0.71073 A	
Theta range for data collection	3.285 to 29.800°.	
Index ranges	$-16<=\mathrm{h}<=12,-9<=\mathrm{k}<=9,-23<=1<=34$	
Reflections collected	7594	
Independent reflections	$2621[\mathrm{R}(\mathrm{int})=0.0260]$	
Completeness to theta $=25.242^{\circ}$	99.9 \%	
	Refinement	
Absorption correction	Gaussian	
Max. and min. transmission	1.000 and 0.728	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	2621/0/136	
Goodness-of-fit on F^{2}	1.038	
Final R indices [$\mathrm{I}>2$ sigma(I)]	$\mathrm{R} 1=0.0253, \mathrm{wR} 2=0.0485$	
R indices (all data)	$\mathrm{R} 1=0.0346, \mathrm{wR} 2=0.0516$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.549 and -0.743 e. \AA^{-3}	

5. Reference

[1] CrysAlisPro, Agilent Technologies, Version 1.171.37.33 (release 27-03-2014CrysAlis171 .NET)
[2] G. M. Sheldrick, SHELX-2013: Program for the Solution of Crystal Structures 2013, University of Göttingen.
[3] W. Lin, L. Chen, P. Knochel, Tetrahedron 2007, 63, 2787-2797.
[4] H.-S. Lin, L. A. Paquette, Synth. Commun. 1994, 24, 2503-2506.
[5] Y. Liu, S. Xiao, Y. Qi, F. Du, Chem. Asian J. 2017, 12, 673-678.
[6] W.-L. Yu, H. Meng, J. Pei, W. Huang, Y. Li, A. J. Heeger, Macromolecules 1998, 31, 4838-4844.
[7] T. Jiu, H. Liu, L. Fu, X. He, N. Wang, Y. Li, X. Ai, D. Zhu, Chem. Phys. Lett. 2004, 398, 113-117.
[8] L. Engman, D. Stern, I. A. Cotgreave, C. M. Andersson, J. Am. Chem. Soc. 1992, 114, 9737-9743.
[9] S. J. Balkrishna, B. S. Bhakuni, S. Kumar, Tetrahedron 2011, 67, 9565-9575.
[10] N. C. McMullen, F. R. Fronczek, T. Junk, J. Heterocycl. Chem. 2013, 50, 120-124.
[11] N. Biot, D. Bonifazi, Chem. Eur. J. 2018, 24, 5439-5443.
[12] A. Kremer, C. Aurisicchio, F. De Leo, B. Ventura, J. Wouters, N. Armaroli, A. Barbieri, D. Bonifazi, Chem. Eur. J. 2015, 21, 15377-15387.

