Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supporting Information Section

Molecular recognition of methamphetamine by

carboxylatopillar[5]arene: drug-dependent complexation

stoichiometry and insights into medical applications

Eduardo V. Silveira,*^{,a} Eduardo H. Wanderlind,^a Andrieli K. Masson,^a Vanessa

Nascimento,^b Pâmella S. Cordeiro,^b Ricardo F. Affeldt^a and Gustavo A. Micke^a

^aDepartment of Chemistry, Federal University of Santa Catarina, Florianópolis-SC, 88040-900, Brazil. *E-mail: eduardovieira.chem@gmail.com

^bDepartment of Organic Chemistry, Fluminense Federal University, Niterói-RJ, 24020-150, Brazil.

Section

1. Synthesis of Carboxylatopillar[5]arene (P5C)		
2. Synthesis of Methamphetamine (Meth)		
3. Potentiometric Titration		
4. NMR Experiments	S10	
5. DLS Experiment	S15	
6. References	S16	

1. Synthesis of Carboxylatopillar[5]arene (P5C)

The synthetic route used to obtain the carboxylatopillar[5]arene (P5C) was based on the literature,^{1,2} with modifications. Scheme S1 shows the four reaction steps for P5C synthesis: (step 1) cyclization promoted by Lewis acid, (step 2) demethylation with BBr₃, (step 3) alkylation with methyl chloroacetate and (step 4) saponification followed by acidification.

Scheme S1. Synthetic route used to obtain P5C.

(Step 1): Under stirring paraformaldehyde (21.70 mmol) was added to a solution of 1,4dimethoxybenzene (1) (21.70 mmol) in dry 1,2-dichloroethane (195 ml). The reaction mixture was stirred for some minutes and trifluoroacetic acid was added. After 2 h, the solution was poured in MeOH and the solid formed collected by filtration, yielding 80% of compound (2) as a solid after recrystallization. ¹H NMR (300 MHz, CDCl₃, TMS), δ (ppm): 6.88 (s, 1H); 3.76 (s, 1H); 3.73 (s, 3H). ¹³C APT NMR (75 MHz, CDCl₃, residual solvent as reference), δ (ppm): 150.46 (C); 128.33 (C); 113.39 (CH); 55.51 (CH₃); 29.37 (CH₂).

Fig. S1A ¹H NMR spectrum of **(2)** (CDCl₃; 300 MHz; 25.0 °C; TMS).

Fig. S1B ¹³C APT NMR spectrum of **(2)** (CDCl₃; 75 MHz; 25.0 °C; residual solvent as reference).

(Step 2): To a solution of (2) (0.800 mmol) in CH₂Cl₂ (24 ml), boron tribromide (38.9 mmol) was added at 0 °C. The reaction mixture was stirred under N₂ atmosphere for 96 h at room temperature. H₂O was added and the system was stirred for further 72 h. The solid formed was collected by filtration, washed with H₂O and dried under vacuum to yield 90% of compound (3). ¹H NMR (300 MHz, Acetone-D₆, TMS), δ (ppm): 8.09 (s,

1H); 6.68 (s, 1H); 3.58 (s, 1H). ¹³C APT NMR (75 MHz, Acetone-D₆, residual solvent as reference), δ (ppm): 147.44 (C); 127.99 (C); 118.27 (CH); 30.65 (CH₂).

Fig. S2A ¹H NMR spectrum of (3) (Acetone-D₆; 300 MHz; 25.0 °C; TMS).

Fig. S2B ¹³C APT NMR spectrum of **(3)** (Acetone-D₆; 75 MHz; 25.0 °C; residual solvent as reference).

(Step 3): Methyl chloroacetate (1.64 mmol) and K_2CO_3 (3.28 mmol) were added to a solution of (3) (0.082 mmol) in dry CH₃CN (3.5 ml). The mixture was kept under reflux

for 48 h and then filtered and washed with CHCl₃. The solvent was removed giving the product (4) with 35% of yield after purification. ¹H NMR (500 MHz, CDCl₃, TMS), δ (ppm): 6.99 (s, 1H); 4.55 (s, 2H); 3.85 (s, 1H); 3.55 (s, 3H). ¹³C APT NMR (75 MHz, CDCl₃, residual solvent as reference), δ (ppm): 169.93 (C); 149.07 (C); 128.63 (C); 114.62 (CH); 65.63 (CH₂); 51.85 (CH₃); 29.43 (CH₂).

Fig. S3A ¹H NMR spectrum of (4) (CDCl₃; 500 MHz; 25.0 °C; TMS).

Fig. S3B ¹³C APT NMR spectrum of **(4)** (CDCl₃; 75 MHz; 25.0 °C; residual solvent as reference).

(Step 4): A solution of (4) (0.046 mmol) in EtOH (4 mL) was treated with 40% aqueous sodium hydroxide (4 mL) in reflux for 16 h. The reaction mixture was concentrated under reduced pressure and acidified with HCl. The precipitated product was collected by filtration, washed with H₂O and dried under vacuum to yield 99% of compound (5) (P5C). ¹H NMR (200 MHz, DMSO-D₆, TMS), δ (ppm): 7.06 (s, 1H); 4.66 (d, *J* = 15.9 Hz, 1H); 4.41 (d, *J* = 15.8 Hz, 1H); 3.73 (s, 1H). ¹³C{¹H} NMR (50 MHz, DMSO-D₆, residual solvent as reference), δ (ppm): 170.29; 148.62; 127.58; 114.29; 65.39; 28.48.

Fig. S4A ¹H NMR spectrum of P5C (DMSO-D₆; 200 MHz; 25.0 °C; TMS). The total area of the H*3* (superposed by HDO) was obtained by fitting of its line.

Fig. S4B ${}^{13}C{}^{1}H$ NMR spectrum of P5C (DMSO-D₆; 50 MHz; 25.0 °C; residual solvent as reference).

Fig. S5 HRMS/ESI-TOF spectra of aqueous solution of P5C in negative ion mode. For $[P5C-3H^+]^{3-}$ (C₅₅H₄₇O₃₀): calculated 395.7383, found 395.7389 (**A**). For $[P5C-2H^+]^{2-}$ (C₅₅H₄₈O₃₀), calculated 594.1124, found 594.1120 (**B**).

2. Synthesis of Methamphetamine (Meth)

The methamphetamine was obtained by reduction of the pseudoephedrine by the Moscow method (I₂ + P) followed by purification (acid-base extractions and Kugelrohr distillation). Yield of 53% as a colorless oil. ¹H NMR (200 MHz, MeOD-D₄, TMS), δ (ppm): 7.32–7.16 (m, 5H); 2.77 (m, 2H); 2.51 (m, 1H); 2.35 (s, 3H); 1.00 (d, *J* = 6.2 Hz, 3H). ¹³C{¹H} NMR (50 MHz, MeOD-D₄, residual solvent as reference), δ (ppm): 140.47; 130.29; 129.49; 127.32; 57.69; 43.78; 33.64; 19.05.

Fig. S6A ¹H NMR spectrum of methamphetamine (MeOD-D₄; 200 MHz; 25.0 °C; TMS).

Fig. S6B ¹³C{¹H} NMR spectrum of methamphetamine (MeOD-D₄; 50 MHz; 25.0 °C; residual solvent as reference).

3. Potentiometric Titration

A potentiometric titration of P5C was performed in H₂O:CH₃CN 8:2 (v/v), employing a Hanna HI1330 combined glass electrode coupled to a Hanna HI 113 pH meter. A sample containing P5C (4.675×10^{-6} mol) at an initial pH of 9.685 was titrated at 22.0 °C under N₂ with a standard HCl solution (8.8305×10^{-3} M) containing the same H₂O:CH₃CN ratio. All solutions, including those for the HCl solution standardization, were prepared with previously boiled deionized water. The titration profile was analyzed employing the CurtiPot software.³

The data fitting of the potentiometric titration profile of P5C (Fig. 1, see manuscript) was performed considering the independence of its carboxyl groups and equivalence between its two portals, resulting in 5 different pK_{as} for the macrocycle, as shown below. From this, the relative distribution of species was calculated as a function of pH (Fig. S7), with the electrostatic destabilization effect between the carboxyl groups increasing with pH.

Fig. S7 Relative fractions of the P5C species as a function of pH.

4. NMR Experiments

The NMR experiments were performed using Bruker AC 200 and 400 MHz spectrometers. For the ¹H NMR titration, to the NMR tube containing the P5C solution ([P5C] = 11.51 mM in D₂O; pD 7.00; [Bis-Tris methane] = 0.01 M; TMSP), aliquots of concentrated solutions of Meth were added (D₂O; pD 7.00; [Bis-Tris methane] = 0.01 M; TMSP), and after its total homogenization the spectra were collected. Mixing time of 225 ms was used in the ¹H ROESY experiment.

4.1 ¹H NMR titration

The ¹H NMR titration was performed to provide structural elucidation of the complexes and the affinity between P5C and Meth. Fig. 2 (see manuscript) show the binding isotherms for all hydrogens of the Meth and P5C, these data being obtained from the successive spectra shown below.

Fig. S8 Successive spectra of the ¹H NMR titration at different conditions of $[Meth]_0/[P5C]_0$ showing the chemical shifts observed for the aromatic hydrogens of Meth (H*a*, H*b* and H*c*) and P5C (H*1*).

Fig. S9 Successive spectra of the ¹H NMR titration at different conditions of $[Meth]_0/[P5C]_0$ showing the chemical shifts observed for the aliphatic hydrogens of Meth (H*d*, H*e*, H*g* and H*f*, **Above**) and P5C (H2 and H3, **Below**).

4.2 Treatment of the ¹H NMR titration data

The graphic of $\Delta\delta vs$. [Meth]₀/[P5C]₀ for H*f* hydrogen was fitted to H:G, H:G₂ and H₂:G to investigate the stoichiometry and magnitude of the binding constants. For this, different models were used,⁴ all presented below:

H:G stoichiometry

Assuming only the existence of the H:G complex $(H + G \rightleftharpoons H:G)$, the binding constant is defined by:

$$K_{1:1} = \frac{[\mathrm{H:G}]}{[\mathrm{H}] \cdot [\mathrm{G}]}$$

Since the free H and G concentrations can not be measured directly, an alternative approach to use [P5C]₀ and [Meth]₀ can be solved, reaching:

$$[H:G] = \frac{1}{2} \left\{ [P5C]_0 + [Meth]_0 + \frac{1}{K_{1:1}} - \sqrt{\left([P5C]_0 + [Meth]_0 + \frac{1}{K_{1:1}} \right)^2 - 4[P5C]_0 [Meth]_0} \right\}$$

Lastly, the experimental data was fitted to the Equation S1:

$$\Delta \delta = \delta_{1:1} \left(\frac{[\text{H:G}]}{[\text{H}]_0} \right) \tag{S1}$$

H:G₂ stoichiometry

Assuming the existence of high order complexes in relation to Meth (H + G \iff H:G + G \iff H:G₂), the macroscopic binding constants are defined by:

$$K_{1:1} = \frac{[\text{H:G}]}{[\text{H}] \cdot [\text{G}]}$$
 $K_{1:2} = \frac{[\text{H:G}_2]}{[\text{H:G}] \cdot [\text{G}]}$

Thus, the free Meth concentration can be determined by the cubic equation below:

$$a[Meth]^3 + b[Meth]^2 + c[Meth] - [Meth]_0 = 0$$

Where:

$$a = K_{1:1}K_{1:2}$$

$$b = K_{1:1}(2K_{1:2}[P5C]_0 - K_{1:2}[Meth]_0 + 1)$$

$$c = K_{1:1}([P5C]_0 - [Meth]_0) + 1$$

Lastly, the experimental data was fitted to the Equation S2:

$$\Delta \delta = \frac{\delta_{1:1} K_{1:1} [\text{Meth}] + \delta_{1:2} K_{1:1} K_{1:2} [\text{Meth}]^2}{1 + K_{1:1} [\text{Meth}] + K_{1:1} K_{1:2} [\text{Meth}]^2}$$
(S2)

H₂:G stoichiometry

Assuming the existence of high order complexes in relation to P5C (H + G \iff H:G + H \iff H₂:G), the macroscopic binding constants are defined by:

$$K_{1:1} = \frac{[\mathrm{H:G}]}{[\mathrm{H]\cdot[G]}}$$
 $K_{2:1} = \frac{[\mathrm{H}_2:\mathrm{G}]}{[\mathrm{H:G}]\cdot[\mathrm{H}]}$

Thus, the free P5C concentration can be determined by the cubic equation below:

$$a[P5C]^3 + b[P5C]^2 + c[P5C] - [P5C]_0 = 0$$

Where:

$$a = K_{1:1}K_{2:1}$$

$$b = K_{1:1}(2K_{2:1}[Meth]_0 - K_{2:1}[P5C]_0 + 1)$$

$$c = K_{1:1}([Meth]_0 - [P5C]_0) + 1$$

Lastly, the experimental data was fitted to the Equation S3:

$$\Delta \delta = \frac{\delta_{1:1}[\text{Meth}]_0 K_{1:1}[\text{P5C}] + 2\delta_{2:1}[\text{Meth}]_0 K_{1:1} K_{2:1}[\text{P5C}]^2}{[\text{H}]_0 (1 + K_{1:1}[\text{P5C}] + K_{1:1} K_{2:1}[\text{P5C}]^2)}$$
(S3)

For fitting data Bindfit online tool was used. Table S1 shows the values of $K_{1:1}$ and $K_{1:2}$ or $K_{2:1}$ for H*f*. To access each data file click at Bindfit (blue color) or use the corresponding link. Alternatively, these data are shown in the Fig. S10.

Table S1. Binding constants obtained from fitting experimental data of H*f* to Equations S1-S3 (using Bindfit online tool, <u>supramolecular.org</u>).

Stoichiometry	Link	K _{1:1} (M ⁻¹)	<i>K</i> _{1:2} or <i>K</i> _{2:1} (M ⁻¹)
H:G	Bindfit ^(a)	$83.42 \pm 2.9\%$	
H:G ₂	Bindfit ^(b)	$(4.42 \times 10^{14}) \pm 10^{80}\%$	$20.96 \pm 2.3\%$
H ₂ :G	Bindfit ^(c)	$23.42 \pm 5.3\%$	$28.72 \pm 5.3\%$

(a) <u>http://app.supramolecular.org/bindfit/view/ac04073e-05eb-42ed-adb8-e18583988a79</u>
 (b) <u>http://app.supramolecular.org/bindfit/view/16ff20f6-bc9e-4d69-847a-a47dc737628b</u>
 (c) <u>http://app.supramolecular.org/bindfit/view/733e249f-89b5-426a-958d-b856bb38a306</u>

Fig. S10 ¹H NMR chemical shifts for H*f* in response to the increased [Meth]₀/[P5C]₀ ratio, with data fitting and residuals to H:G (**left**), H:G₂ (**middle**) and H₂:G (**right**) stoichiometries (pD 7.00; [Bis- Tris methane] = 10.0 mM; 25.0 °C; 200 MHz).

5. DLS Experiment

A dynamic light scattering (DLS) titration under the same conditions of ¹H NMR titration was performed on a ZetaPlus Brookhaven equipment to evaluate the hydrodynamic diameter ($D_{\rm H}$) as a function of the Meth addition. Solutions were prepared and manipulated in a clean chamber (TROX Chapel class 100) using nitrile gloves (free of talc) in a certified white laboratory. All samples were filtered twice through PVDF 0.20 µm filters (ChromafilXtraCA-20/25) before titration.

The first titration point (P5C only) revealed a $D_{\rm H}$ value close to 1 nm (Fig. S11A), being consistent with sizes already determined for structurally similar pillararenes.⁵ The increase in [Meth]₀/[P5C]₀ ratio (Fig. S11B-D) resulted in the appearance of species close to 2 nm, which corroborates the formation of dimers of P5C, that is, the observed H₂:G complex with Meth. We emphasize that the size range measurable by the equipment (2 nm to 3 µm) can generate some inaccuracy in the distribution of the $D_{\rm H}$ values, which lead us to consider this data only to exclude the possibility of formation of larger aggregates or tube-type self-assemblies (**P5C--Meth--P5C--Meth--P5C**...).

Fig. S11 $D_{\rm H}$ distribution of aqueous solutions of P5C (**A**) and [Meth]₀/[P5C]₀ ratios of 5 (**B**), 15 (**C**) and 30 (**D**), (pH 7.00; [P5C] = 10.0 mM; [Bis-Tris methane] = 10.0 mM; 25.0 °C).

6. References

- G. Yu, M. Xue, Z. Zhang, J. Li, C. Han and F. Huang, J. Am. Chem. Soc. 2012, 134, 13248–13251.
- (2) J. Yang, G. Yu, D. Xia and F. Huang, *Chem. Commun.*, 2014, **50**, 3993–3995.
- I. G. R. Gutz. Available at: http://www.iq.usp.br/gutz/Curtipot.html. Accessed: 2 May 2019.
- (4) P. Thordarson, *Chem. Soc. Rev.*, 2011, **40**, 1305–1323.
- (5) M. Panneesrselvam, M. D. Kumar, M. Jaccob and R. V. Solomon, *ChemistrySelect*. 2018, **3**, 1321–1334.