Supplementary Information

Support morphology-dependent catalytic activity of Co/CeO2 catalyst for the

aqueous-phase hydrogenation of phenol

Jinzhi Lu^{a, b}, Zhanwei Ma^a*, Xuemei Wei^{a, b}, Qinsheng Zhang^a, Bin Hu^a*

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute

of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China

^b University of Chinese Academy of Sciences, Beijing 100049, China

Fig. S1 TEM image of Co/CeO₂ catalysts, (a) Co/r-CeO₂, (b) Co/c-CeO₂, and (c) Co/p-CeO₂.

Fig. S2 XRD spectra of cobalt catalysts supported on different morphologies of CeO₂.

Fig. S3 XRD pattern of the catalysts after the reaction.

Fig. S4 High resolution XPS spectra of Co 2p before reaction (a) and after reaction (b)

Fig. S4(a) shows the high-resolution XPS spectrum of Co 2p before the reaction. The two peaks at approximately 781.2 and 797 eV can be attributed to the binding energies of the Co $2p_{3/2}$ and Co $2p_{1/2}$, respectively, and the binding energy gap was 15.8 eV, which indicated the Co species was Co_3O_4 .¹ The lower bonding energy at 779.8 eV and 794.8 eV can be assigned to metallic $Co^{0.2}$

Entry	Sample	Catalyst	Temp.	Products	Conv. (%)	Sel. (%)
	OH	Co/r-CeO ₂	150 ℃	ОН	82.5	≥99
		r-CeO ₂	150 °C		0	0
1		c-CeO ₂	150 °C		0	0
		p-CeO ₂	150 °C		0	0
		Co ₃ O ₄	150 °C		26.5	≥99
		Co/r-CeO ₂ ^b	150 °C		81.6	≥99
2	OH OCH ₃	Co/r-CeO ₂	150 °C	OH OCH ₃	40.0	≥99
3	OH CH ₃	Co/r-CeO ₂	150 °C	OH CH ₃	56.0	≥99

Table S1. Catalytic hydrogenation of phenol derivatives using different Co catalysts.^a

^{*a*}Reaction condition: 250 mg of phenol, 100 mg of catalyst, 10 mL of deionized water and 3 MPa H_2 for 16 h. ^{*b*} Co/r-CeO₂ was reduced at 200 °C and H_2 atmosphere for 2 hours.

Fig. S5 The infrared fourier transform spectroscopy of Co-based catalysts.

Fig. S6 Static water contact angles measurement for $p-CeO_2$, $c-CeO_2$ and $r-CeO_2$.

Table 52. Effect of solvents on the hydrogenation of phenol by Co/1-CeO2 edulyst.						
Entry	Solvents	Conv. (%)	\mathbf{p}^{b}	Sel. (%)		
1	water	48.1	10.2	≥99		
2	n-hexane	86.2	0.06	≥ 99		
3	i-propanol	72.3	4.3	≥ 99		
4	ethanol	54.4	4.3	≥ 99		
5	THF	21.8	4.2	≥99		
6	dimethyl sulfoxide	0	7.2	0		

Table S2. Effect of solvents on the hydrogenation of phenol by Co/r-CeO₂ catalyst.^{*a*}

Fig. S7 Cycling experiments for the hydrogenation of phenol using Co/r-CeO₂ in hexane at T = 150 °C and in water at T = 150 °C. Reaction conditions: 8 h, 3 MPa, 200 mg of phenol, 100 mg of catalyst, 20 mL of solvent.

Fig. S8 The FTIR spectra of Co/r-CeO₂ and the used Co/r-CeO₂ in hexane.

Fig. S9 The TEM images of Co/r-CeO $_2$ (a) and Co/c-CeO $_2$ catalyst after the reaction.

Table 55. The relative amount of anterent components.							
Sample	Ce ⁴⁺	Ce ³⁺	Ce ³⁺ /Ce ⁴⁺	O _C	O_V	$O_{\rm L}$	O_V / O_L
Co/p-CeO ₂ ^a	74.2%	25.8%	0.35	50.7%	32.1%	17.2%	1.87
Co/r-CeO ₂ ^a	73.4%	26.6%	0.36	15.1%	38.5%	46.4%	0.83
Co/c-CeO ₂ ^a	77.0%	23.0%	0.30	54.4%	18.3%	27.3%	0.67
Co/p-CeO ₂ ^b	72.8%	27.2%	0.37	17.4%	35.5%	47.1%	0.75
Co/r-CeO ₂ ^b	66%	34%	0.52	29.6%	33.8%	36.6%	0.92
Co/c-CeO ₂ ^b	73.8%	26.2%	0.36	18.2%	32.1%	49.7%	0.65

Table S3. The relative amount of different components.

^{*a*}The catalysts before reaction; ^bthe catalysts after reaction.

Fig. S10 High resolution XPS spectra of Ce3d before reaction (a) and after reaction (b).

Fig. S11 The ideal CeO_2 structure seen from (100), (110) and (111) directions.

Fig. S12 The O₂-TPO images of Co/CeO₂ with different morphological supports.

Reference

 L. Liu, J. Ding, G. V. Sarrigani, P. Fitzgerald, Z. M. Aljunid Merican, J.-W. Lim, H.-H. Tseng, F. Xie, B. Zhang and D. K. Wang, Applied Catalysis B: Environmental, 2020, 262, 118246.

2. Y. Zhan, Y. Liu, X. Peng, W. Zhao, Y. Zhang, X. Wang, C.-t. Au and L. Jiang, Catalysis Science & Technology, 2019, 9, 4928-4937.