Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

for

Exploration of the Potential Efficacy of Natural Resource Derived Blue Emitting Graphene Quantum Dots in Cancer Therapeutic Application

Soumitra Ghorai*¹, Indranil Roy², Sriparna De³, Pratik Swarup Dash¹, Arijita Basu², Dipankar

Chattopadhyay*²

¹ Research & Development Division, Tata Steel, Jamshedpur 831007, India

² Department of Polymer Science and Technology, University of Calcutta, Kolkata 700009, India

³ Department of Allied Health Science, Brainware University, Kolkata 700125, India

^{*}Corresponding author:

E-mail: <u>soumitra.ghorai@tatasteel.com; soumitrachemist@gmail.com;</u> Tel: 0091-7033094953 E-mail: <u>dipankar.chattopadhyay@gmail.com;</u> Tel: 0091-9433379034

Chemicals:

Bituminous coal (CDPCI) was utilized as received and crushed into powder (72 mesh) for synthesis purpose. HCl (Merck, India), HNO₃ (Merck, India), Oxone (Sigma-Aldrich, USA) and DMF (Merck, India) were utilized as received. Here, double distilled water was utilized for experimental work. For the preparation of Dulbecco's Modified Eagle's Medium (DMEM) media, penicillin and streptomycin were purchased from Sigma-Aldrich, USA. Fetal bovine serum (FBS) was procured from GIBCO/Invitrogen. 4',6-Diamidino-2-phenylindole dihydrochloride (DAPI) and 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-tetrazolium bromide (MTT) reagent was purchased from Sigma-Aldrich, USA and Himedia, India respectively.

Fig. S1: TRPL decay profile of blue GQDs at room temperature.

Fig. S2: Cell viability of fibroblast and breast cancer cell lines

Table S1:	Comparison	of GQDs	Quantum	Yield	derived	from	coal
-----------	------------	---------	---------	-------	---------	------	------

Sl. No.	References	Quantum Yield (Q.Y)
1	Methods of producing graphene quantum dots from coal and	5.35 %
	coke (Patent: WO2014179708A1)	
2	Coal as an abundant source of graphene quantum dots (Nature	1.0 %
	Communications; 2013, 4, 2943, DOI: 10.1038/ncomms3943)	
3	Graphene quantum dots, graphene oxide, carbon quantum	1.8 %
	dots and graphite nanocrystals in coals (Nanoscale, 2014, 6,	
	7410–7415)	
4	Present Study	14.42 %