A combined experimental and theoretical study of the thermal decomposition mechanism and kinetics of ammonium dinitramide (ADN)

Kuan Wang,^{*,a} Bing Xue,^a Jian-Gang Chen,^{*,b} Zhen-Hong He,^a Yueping Ji,^c Bozhou Wang,^c

Jian Lu,^c Zhong-Wen Liu,^b Zhao-Tie Liu,^{*,a,b}

^aCollege of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology,

Xi'an, 710021, China

^bKey Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), and School

of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China ^cState Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, China

^{*}To whom correspondence should be addressed: K. Wang, Fax/Tel: +86-29-86168327. E-mail: wangkuan@sust.edu.cn; J.-G. Chen, Fax/Tel: +86-29-81530803. E-mail: jgchen@snnu.edu.cn; Z.-T. Liu, Fax/Tel: +86-29-81530802. E-mail: ztliu@snnu.edu.cn.

Fig. S1 Four optimized structures of gaseous ADN.

Fig. S2 Arrhenius plots of rate coefficients (k^{TST} and $k^{\text{TST/Eckart}}$) of the most favorable decomposition path D3 calculated at the B3LYP-D3 level of theory.

Reaction	B3LYP-D3 ^a	CCSD(T)//B3LYP-D3 ^b	Ref.
$ADN(g)-1 \rightarrow HDN-1+NH_3$	13.0	12.5	12.4 ^c
ADN(g)-2HDN-2+NH ₃	15.7	13.7	14.1°, 13.9 ^d
ADN(g)-3HDN-3+NH ₃	16.2	13.7	-
ADN(g)-4HDN-4+NH ₃	16.5	14.2	-

Table S1 Bond dissociation energies (kcal/mol) for the NH₃ elimination reaction of gaseous ADN (four structures).

^aThe dissociation energies include zero-point corrections at the B3LYP-D3/6-311G(2d,p), which is denoted as B3LYP-D3; ^bCCSD(T)/6-311+G(3d,2p)//B3LYP-D3/6-311G(2d,p) is denoted as CCSD(T)//B3LYP-D3; ^cReference 32, MP4(SDQ)/6-31+G(d,p); ^dReference 41, Generalized gradient approximation (GGA) with PW91 exchange-correlation functional via the Vienna Ab-initio Simulation Package (VASP).

Species	B3LYP-D3 ^a	M062X-D3 ^b	CCSD(T) //B3LYP-D3 ^c	Ref.B3LYP ^d	Ref.G2M ^e
HDN-1	0.0	0.0	0.0	0.0	0.0
TS1	33.6	33.9	35.6	33.7	34.3
HDN-2	7.1	5.7	3.9	7.2	4.0
TS2	11.6	10.3	7.4	13.0	7.7
HDN-3	6.4	4.8	3.1	6.8	3.1
TS3	34.5	33.1	33.4	39.0	32.3
HDN-4	7.5	7.0	5.2	9.1	5.4
TS4	12.6	11.6	9.5	-	-
HDN-5	3.6	2.1	4.5	-	-

Table S2 The relative energies (ΔE , kcal/mol) of species involved in the proton transfer reactions of HDN.

^aThe relative energies (ΔE) include zero-point corrections at the B3LYP-D3/6-311G(2d,p), which is denoted as B3LYP-D3; ^bM062X-D3/6-311G(2d,p) is denoted as B3LYP-D3; ^cCCSD(T)/6-311+G(3d,2p)//B3LYP-D3/6-311G(2d,p) is denoted as CCSD(T)//B3LYP-D3; ^dReference 33, B3LYP/6-311G(d,p); ^eReference 33, G2M(RCC,MP2).

Species	$\Delta H (\text{kcal/mol})^{\text{a}}$	$\Delta E (\text{kcal/mol})^{\text{b}}$	$\Delta G (\text{kcal/mol})^{\text{b}}$
HDN-1	0.0	0.0	0.0
A1-TS1	73.5	69.4	69.7
A1-IM1	7.3	3.0	3.0
7 +NO	18.0	15.5	4.8
A2-TS1	31.9	36.4	37.3
A2-IM1	17.8	17.4	17.2
6 +NO	39.1	41.0	4.8
HDN-2	0.0	0.0	0.0
B1-TS1	69.5	62.2	62.7
B1-IM1	16.4	6.1	6.3
NOOH+2NO	-2.7	-16.2	-36.5
B2-TS1	34.9	38.6	39.5
B2-IM2	17.3	17.7	19.1
NO ₃ +N ₂ +OH	-2.8	-13.1	-31.8
B3-TS1	44.4	41.5	41.5
B3-IM1	-0.7	2.0	2.4
NO ₂ +N ₂ O+OH	5.6	-0.9	-20.1
HDN-3	0.0	0.0	0.0
C1-TS1	57.5	42.3	41.7
C1-IM1	9.4	7.8	7.5
NOOH+2NO	-2.1	-15.5	-36.1
C2-TS1	44.6	38.9	39.4
C2-IM1	19.1	12.2	10.9
NO ₃ +N ₂ +OH	-2.1	-12.4	-31.4
HDN-4	0.0	0.0	0.0
D1-TS1	55.8	40.3	39.6
D1-IM1	6.4	3.5	3.1
NOOH+2NO	-3.7	-17.6	-38.3
D2-TS1	50.1	50.6	51.4
HNO ₃ +N ₂ O	-43.4	-45.0	-55.1
D3-TS1	29.1	33.3	33.5
HNO ₃ +N ₂ O	-43.4	-45.0	-55.1
HDN-5	0.0	0.0	0.0
E1-TS1	61.0	42.3	41.0
E1-IM1	12.4	5.6	4.4
NOOH+2NO	1.2	-16.8	-38.1
E2-TS2	55.2	51.4	51.5
HNO ₃ +N ₂ O	-38.6	-44.2	-54.9

Table S3 Relative Energies (ΔE), Enthalpies (ΔH), and Gibbs free energies (ΔG) of all the species for the initial decomposition pathways of HDN. (ΔH and ΔG Values are given at 1.0 atm and 298.15 K).

^a Calculated by B3LYP-D3/6-311G(2d,p); ^b Calculated by CCSD(T)/6-311+G(3d,2p) //B3LYP-D3/6-311G(2d,p).

No.	Reaction	A	n	E_a	order
1	$NOOH \rightarrow NO + OH$	1.09×10 ¹⁶	-1.23	208	1
2	$H + NO \rightarrow HNO$	1.47×10^{14}	-0.41	0	2
3	$HNO + OH \rightarrow H_2O + NO$	4.82×10 ¹³	0	4.16	2
4	$HNO + NO_2 \rightarrow NOOH + NO$	6.02×10 ¹¹	0	8.31	2
5	$H + NO_2 \rightarrow OH + NO$	1.32×10^{14}	0	1.51	2
6	$\mathrm{H} + \mathrm{OH} \longrightarrow \mathrm{H_2O}$	2.09×10 ¹⁷	0	0	3

Table S4 The theoretical rate coefficients expression of the corresponding molecular and radical reaction from the NIST Chemical Kinetics Database.^a

^aThe units of rate constants are s⁻¹ for first-order reactions, $m^3 \cdot mol^{-1} \cdot s^{-1}$ for second-order reactions, and $m^6 \cdot mol^{-2} \cdot s^{-1}$ for second-order reactions. *Ea* is in kJ/mol.