Supporting information

## Etching high-Fe-content PtPdFe nanoparticles as efficient catalysts towards glycerol electrooxidation

Jiao Zhao<sup>1, a</sup>, Wangli Jing<sup>1, a</sup>, Ting Tan<sup>a</sup>, Xianyi Liu<sup>a</sup>, Yumao Kang<sup>b</sup>, Wei Wang<sup>a, \*</sup>

<sup>a</sup>School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

<sup>b</sup>Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Gansu Polymer Materials, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China

Corresponding author, e-mail: <u>wangwchem@163.com</u>, wangw@mail.lzjtu.cn, Tel. /Fax: +86 931 4956220.





Fig. S1 SEM and corresponding EDS of PtPd-6/C.



**Fig. S2** The EASA comparison on Pd/C, Pt/C, PtPd-0/C, Pt<sub>1</sub>Pd<sub>1</sub>Fe<sub>6</sub>/C and PtPd-6/C.

| Electrocatalysts                       | Particle  | Electrolyte        | Oxidation peak current           | Noble metal | References |
|----------------------------------------|-----------|--------------------|----------------------------------|-------------|------------|
|                                        | size (nm) |                    | (A mg <sup>-1</sup> noble metal) | loading (%) |            |
| PtPd-6/C                               | 2.8       | 0.1 M KOH + 0.5 M  | 0.86                             | 9.41        | This work  |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd55Pt30 NNWs                          | 5.0       | 1.0 M KOH + 0.1 2M | 0.66                             | 25.57       | [1]        |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd <sub>0.5</sub> Au <sub>0.5</sub> /C | 5.0       | 1.0 M NaOH + 0.1 M | 0.09                             | 37.00       | [2]        |
|                                        |           | Glycerol           | (vs.RHE)                         |             |            |
| Pd-NiO <sub>x</sub> -P/C               | 4.4       | 0.1 M KOH + 0.5 M  | 0.36                             | 14.00       | [3]        |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd/Cu/NPSS                             | N/A       | 1.0 M KOH + 5 wt.% | 0.82                             | 11.78       | [4]        |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd-CN <sub>x</sub> /G                  | 4.4       | 0.5 M NaOH + 0.5 M | 1.10                             | 28.00       | [5]        |
|                                        |           | Glycerol           | (vs.Hg/HgO)                      |             |            |
| FeCo@Fe@Pd/C                           | 3~7       | 0.5 M KOH + 0.5 M  | 0.26                             | 22.00       | [6]        |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pt <sub>5</sub> Ru <sub>5</sub> /GNS   | 1.8       | Biomass-derived    | 0.27                             | 60.00       | [7]        |
|                                        |           | glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd <sub>50</sub> Ag <sub>50</sub> /C   | 3.73~3.97 | 0.1 M NaOH + 0.1 M | 0.26                             | 25.60       | [8]        |
|                                        |           | Glycerol           | (vs.RHE)                         |             |            |
| Pd/CPAA                                | N/A       | 1.0 M KOH + 1.0 M  | 0.24                             | 50.00       | [9]        |
|                                        |           | Glycerol           | (vs.Hg/HgO)                      |             |            |
| Pd <sub>3</sub> Sn/phen-C              | 5.3       | 0.1 M KOH + 0.5 M  | 0.18                             | 14.80       | [10]       |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |
| Pd <sub>3</sub> Cu/NMC                 | N/A       | 0.1 M KOH + 0.5 M  | 0.33                             | 13.90       | [11]       |
|                                        |           | Glycerol           | (vs.Ag/AgCl)                     |             |            |

electrocatalysts toward GOR in alkaline medium.

 Table S1. Comparison of electrocatalytic performance on noble metal-based

## References

[1] W. Hong, C. Shang, J. Wang, E. Wang, *Energy Environ. Sci.*, 2015, 10, 2910-2915.

[2] M. Simões, S. Baranton, C. Coutanceau, *Appl. Catal. B: Environ.*, 2010, 93, 354-362.

- [3] X. Zhao, J. Zhang, L. Wang, H.X. Li, Z. Liu, W. Chen, ACS Appl. Mater. Inter., 2015, 7, 26333-26339.
- [4] B. Rezaei, E. Havakeshian, A.A. Ensafi, *Electrochim. Acta*, 2014, 136, 89-96.
- [5] A. Zalineeva, A. Serov, M. Padilla, U. Martinez, K. Artyushkova, S. Baranton, C.Coutanceau, P.B. Atanassov, J. Am. Chem. Soc., 2014, 136 3937-3945.
- [6] O.O. Fashedemi, K.I. Ozoemena, *Electrochim. Acta*, 2014, **128**, 279-286.
- [7] H.J. Kim, S.M. Choi, M.H. Seo, S. Green, G.W. Huber, W.B. Kim, *Electrochem. Commun.*, 2011, 13, 890-893.
- [8] Y. Holade, C. Morais, S.A. Clacens, K. Servat, T.W. Napporn, K.B. Kokoh, *Electrocatalysis*, 2013, 4, 167-178.
- [9] Z. Wang, F. Hu, P.K. Shen, *Electrochem. Commun.*, 2006, 8, 1764-1768.
- [10] W. Wang, Y. Kang, Y. Yang, Y. Liu, D. Chai, Z. Lei, *Int. J. Hydrogen Energy*, 2016, 41, 1272-1280.
- [11] H. Wang, L. Thia, N. Li, X. Ge, Z. Liu, X. Wang, ACS Catal., 2015, 5, 3174-3180.