Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Copillar[5]arene-rhodamine conjugate as a selective sensor for Hg²⁺ ions

Saswati Ghosh Roy, Subhendu Mondal and Kumaresh Ghosh*

Department of Chemistry, University of Kalyani, Kalyani-741235, Nadia, West Bengal, India.

* Corresponding author: E-mail: <u>ghosh_k2003@yahoo.co.in</u>; kumareshchem18@klyuniv.ac.in

Figure S1. ¹H NMR spectrum of compound 3.

Figure S2. ¹³C NMR spectrum of compound 3 in CDCl₃.

Figure S4. ¹³C NMR spectrum of compound 4 in CDCl₃.

Figure S5. Electrospray ionization mass spectrum of compound (ESI MS) 4. Assignment of the main peak: m/z 846.45 [M+ Na]⁺ (40%).

Figure S6. ¹H NMR spectrum of compound **5** in CDCl₃ (* Represents the appearance of peak due to CH₃COCH₃).

Figure S7. ¹³C NMR spectrum of compound 5 in CDCl₃.

Figure S8. ¹H NMR spectrum of receptor **1** in CDCl₃ (* Represents the appearance of peak due to H₂O).

Figure S9. ¹³C NMR spectrum of receptor 1 in CDCl₃.

Figure S10. ESI MS of receptor 1. Assignment of the main peak: m/z 1283.59 [M+ Na]⁺ (30%).

Figure S11. ¹H NMR spectrum of receptor 2 in CDCl₃.

Figure S12. ¹³C NMR spectrum of compound 2 in CDCl₃.

Figure S14. UV-Vis Benesi-Hilderband plot for receptor 1 with Hg^{2+} ([H] = [G] = 2.5×10^{-5} M).

Figure S15. Linear binding constant curve for receptor 1 ($c = 2.5 \times 10^{-5}$ M) with Hg²⁺ ($c = 1 \times 10^{-3}$ M).

Figure S16. Partial IR spectrum of (a) receptor **1**, (b) receptor **1** in presence of equivalent amount of $Cu(ClO_4)_2$ and (c) receptor **1** in presence of equivalent amounts of $Hg(ClO_4)_2$.

Figure S17. (a) Suggest mode of binding of receptor **1** with Hg²⁺, and partial ¹H NMR spectra of receptor **1** ($c = 2.5 \times 10^{-3}$ M) (a) in absence and (b) presence of 1 equiv. of Hg²⁺ ion in CDCl₃.

Figure S18: Color change of solution of compound **1** ($c = 2.5 \times 10^{-5}$ M) in CH₃CN-H₂O (3:1, v/v, 10 mM Tris-HCl Buffer, pH = 6.5) after addition of 50 equiv. amounts of different metal ions (taken as perchlorate salt); (b) Change in absorption spectra of **1** ($c = 2.5 \times 10^{-5}$ M) upon addition of 50 equiv. amounts of different metal ions in CH₃CN-H₂O (3:1, v/v, 10 mM Tris-HCl Buffer, pH = 6.5).

Entry	Structure of compounds	Selectivity	Medium	Detection limit (M)	Ref.
1.	P P P P P P P P P P P P P P	Hg ²⁺ ion	Water/ethanol (1:4, v/v, PBS buffer, pH 7)	2.59 x 10 ⁻⁹	1
2.	$R = -CH_3, -OCH_3, -NO_2$	Hg ²⁺ ion	DMF–H ₂ O (1:1, v/v, pH 7.2)	(1) 1.46×10 ⁻⁸ (2) 1.69×10 ⁻⁸ (3) 1.64×10 ⁻⁷	2
3.	$(\mathcal{F}_{\mathcal{N}}^{o},\mathcal{F}_{\mathcal{N}}^{o},\mathcal{F}_{\mathcal{N}}^{o})$	Hg ²⁺ and Fe ³⁺ ion	EtOH/PBS buffer (1:1, v/v,pH 7.4)	2.72 × 10 ⁻⁶	3

Table S1: Reported Rhodamine-based struc	tures in H	(g ²⁺ sensing
--	------------	--------------------------

4.		Hg ²⁺ ion	HEPES/CH ₃ CN (1:1, pH 7.0)	1 × 10-7	4
5		Hg ²⁺ ion	CH ₃ CN/H ₂ O (7:3 v/v) in HEPES buffer at pH 7.2	1.62 × 10 ⁻⁹	5
6.	H_3C^{-S} H_3C	Hg ²⁺ ion	CH ₃ CN/H ₂ O (1:1, v/v, 10 mM, Tris-HCl buffer pH 7.04)	2.63 × 10 ⁻⁸	6
7.	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Hg ²⁺ ion	DMF:H ₂ O (2:8, v/v).	7.48 × 10 ⁻⁹	7
8.		Dual detection of Al ³⁺ and Hg ²⁺ ion	$CH_{3}CN/H_{2}O$ (3:1, v/v; 10 mM HEPES buffer ; pH = 6.85	1.9×10^{-7} for Al ³⁺ ion and 1.26 ×10 ⁻⁷ ion for Hg ²⁺ ion	8
9.		Hg ²⁺ ion	PBS/C ₂ H ₅ OH (9/1, v/v)	9.1×10 ⁻⁹	9
10.		Hg ²⁺ ion	CH ₃ CN:H ₂ O (3:7)	136×10-7	10
11.		Ga ³⁺ and Hg ²⁺ ion	methanol–HEP ES (1:1, v/v, pH 7.0)	$\begin{array}{l} 6.34 \times 10^{-9} \ \text{for} \\ \text{Hg}^{2+} \ 3.52 \\ \times 10^{-9} \ \text{for} \ \text{Ga}^{3+} \end{array}$	11

12.		Hg ²⁺ ion	CH ₃ CN	2.85×10^{-8}	Present
					work
	<hr/> <hr <hr=""/> <hr <="" <hr="" td=""/> <td></td> <td></td> <td></td> <td></td>				

References

- 1. H. Liu, P. Yu, D. Du, C. He, B. Qiu, X. Chen, G. Chen, *Talanta*, 2010, 81, 433.
- 2. S. Angupillai, J.-Y. Hwang, J.-Y. Lee, B. A. Rao, Y.-A. Son, Sensors and Actuators B: Chemical, 2015, 214, 101.
- 3. J. Liu, Y. Qian, Dyes and Pigments, 2017, 136, 782.
- 4. G. Singh, S. I. Reja, V. Bhalla, D. Kaur, P. Kaur, S. Arora, M. Kumar, *Sensors and Actuators B: Chemical*, 2017, **249**, 311.
- 5. R. Bhowmick, R. Alam, T. Mistri, D. Bhattacharya, P. Karmakar, M. Ali, *ACS Appl. Mater. Interfaces*, 2015, **7**, 7476.
- 6. A. Sikdar, S. Roy, S. Dasgupta, S. Mukherjee, S. S. Panja, *Sensors and Actuators B: Chemical*, 2018, **263**, 298.
- 7. K. S. Min, R. Manivannan, Y. A. Son, Sensors and Actuators B: Chemical, 2018, 261, 545.
- 8. S. Mondal, C. Bandyopadhyay, K. Ghosh, Supramol. Chem., 2019, 31, 1.
- 9. Y. Li, S. Qi, C. Xia, Y. Xu, G. Duan. Y. Ge, Analytica Chimica Acta, 2019, 1077, 243.
- 10. S. K. Patil, D. Das, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2019, 210, 44.
- 11. D. Jiang, X. Xue, M. Zhu, G. Zhang, Y. Wang, C. Feng, Z. Wang, H. Zhao *Ind. Eng. Chem. Res.* 2019, **58**, 18456.