Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Supplementary Information

Deep oxidative desulfurization of model fuel catalyzed by polyoxometalates anchored on amine-functionalized ceria doped MCM-41 under molecular oxygen

Chaowei Wang^a, Zhe Liu^a, Ruimin Gao^b, Jinhua Liu^a, Siying An^a, Ronglan Zhang^a, Jianshe Zhao^{a*}

^a Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, College of Chemistry & Materials Science, Northwest University, Xi' an 710069, China

^b Research Institute of Shaanxi Yanchang Petroleum Group Corp. Ltd., Xi'an 710075, China

*Corresponding author. E-mail: jszhao@nwu.edu.cn

Catalyst	W ^a (wt%)	V ^a (wt%)	W/V	POM ^b
			(mol ratio)	(wt%)
10 wt% PW ₉ V ₃ /APTES-CeM-50	5.35	0.49	3.03	8.91
20 wt% PW ₉ V ₃ /APTES-CeM-50	11.47	1.06	3.00	19.12
30 wt% PW ₉ V ₃ /APTES-CeM-50	17.12	1.58	2.99	28.53
40 wt% PW ₉ V ₃ /APTES-CeM-50	23.25	2.15	3.00	38.75
50 wt% PW ₉ V ₃ /APTES-CeM-50	27.94	2.58	2.99	46.57
30 wt% PW ₉ V ₃ /CeM-50	10.11	0.94	3.00	16.83
After used 8 times	12.98	1.20	3.00	21.63

Table S1. ICP results of different catalysts.

^a As tested by ICP-AES analysis.

^b As calculated from the ICP-AES results.

 Table S2. APTES amounts of different catalysts.

Sample	Amine ^a (mmol/g)
CeM-50	0
APTES-CeM-50	4.2
30 wt% PW ₉ V ₃ /APTES-CeM-50	4.2

^a As obtained according to TG method. The unit of amine amount is mmol amine/g CeM.

Fig. S1. FT-IR spectra of POM/APTES-SiM and PW₉V₃/APTES-CeM.

Fig. S2. XRD spectra of POM/APTES-SiM and PW₉V₃/APTES-CeM.

Fig. S3. Nitrogen adsorption-desorption isotherms of POM/APTES-SiM and $PW_9V_3/APTES-CeM$.

Sample	$S_{BET} \left(m^2/g \right)$	$V_P (cm^{3/g})$	$D_{P}(nm)$
PW ₁₂ /APTES-SiM	297	0.415	2.88
$PW_{11}V_1/APTES-SiM$	292	0.399	2.89
PW10V2/APTES-SiM	286	0.381	2.84
PW ₉ V ₃ /APTES-SiM	274	0.362	2.81
PW ₈ V ₄ /APTES-SiM	283	0.374	2.85
PW ₉ V ₃ /APTES-CeM-100	258	0.358	2.80
PW9V3/APTES-CeM-75	245	0.341	2.76
PW ₉ V ₃ /APTES-CeM-50	233	0.328	2.74
PW ₉ V ₃ /APTES-CeM-25	186	0.293	2.67

Table S3. Textural properties of POM/APTES-SiM and PW₉V₃/APTES-CeM.

Fig. S4. Nitrogen adsorption-desorption isotherms of the 10-50 wt% PW₉V₃/APTES-CeM-50 catalysts.

Table 54.	Textural	properties	of the	10-50	Wt% P	W9V3/A	PIES-	CeM-50	catalysts.

Sample	$S_{BET} \left(m^2/g \right)$	$V_P (cm^{3/g})$	$D_{P}(nm)$
10 wt% PW ₉ V ₃ /APTES-CeM-50	536	0.476	2.90
20 wt% PW ₉ V ₃ /APTES-CeM-50	374	0.391	2.83
30 wt% PW ₉ V ₃ /APTES-CeM-50	233	0.328	2.74
40 wt% PW ₉ V ₃ /APTES-CeM-50	108	0.249	2.68
50 wt% PW ₉ V ₃ /APTES-CeM-50	67	0.195	2.63

Fig. S5. FT-IR spectra of the fresh and after used 8 times catalyst.

Fig. S6. SEM images of the (a) fresh and (b) after used 8 times catalyst.

Fig. S7. Low angel XRD patterns of the fresh and after used 8 times catalyst.

Fig. S8. Wide angel XRD patterns of the fresh and after used 8 times catalyst.

Fig. S9. Nitrogen adsorption-desorption isotherms and BJH pore size distribution curves of the fresh and after used 8 times catalyst.

Fig. S10. The GC-MS analysis of the product after ODS. (a) oil phase, (b) CH₃CN phase.

	1	
Temperature/°C	Rate constant k/min ⁻¹	Correlation factor R ²
50	0.00905	0.99132
60	0.01208	0.98763
70	0.01596	0.99221
80	0.02481	0.99732

Table S5. The kinetic data of different reaction temperature.

Table S6. The comparison between ODS results of different POM based cataly	ysts
---	------

Catalyst	Oxidant	Temperature/ DBT		Reference
		°C	conversion/%	
Ag-POM/SWNTs	H ₂ O ₂	20	98.9	S1
$K_6 P_2 W_{18} O_{62}/GO$	Air	60	96.10	S2
HPMo/C	H_2O_2	60	100	S 3
HPW@MOFs	O_2	90	90	S4
HPW/MgAl-LDH-DBS ^a	H_2O_2	60	99.81	S5
H ₈ PV ₅ Mo ₇ O ₄₀	O_2	120	99	S 6
(TBA) ₄ PW ₁₁ Fe@PbO ^b	CH ₃ COOH/H ₂ O ₂	60	97	S7
CNTs@MOF-Mo ₁₆ V ₂	O_2	80	98.30	S 8
PW ₉ V ₃ /APTES-CeM-50	O_2	80	99.26	This work

^a This catalyst represents the phosphotungstic acid (HPW) supported the sodium dodecyl benzene sulfonate (SDBS) modified layered double hydroxides (LDH).

^b This catalyst means a tetra(n-butyl)ammonium salt of iron-substituted phosphotungstate@lead oxide composite.

Reference

- S1 H. Zhang, X. Xu, H. Lin, Din, A. U. M, H. Wang and X. Wang, *Nanoscale*, 2017, 9, 13334-13340.
- S2 S. Dou and R. Wang, New J. Chem., 2019, 43, 3226-3235
- S3 R. Ghubayra, C. Nuttall, S. Hodgkiss, M. Craven, E. F. Kozhevnikova and I. V. Kozhevnikov, *Appl. Catal., B*, 2019, **253**, 309-316.

- S4 J. W. Ding and R. Wang, Chin. Chem. Lett., 2016, 27(5), 655-658.
- S5 P. Huang, A. Liu, L. Kang, M. Zhu and B. Dai, New J. Chem., 2018, 42, 12830-12837.
- S6 B. Bertleff, J. Claußnitzer, W. Korth, P. Wasserscheid, A. Jess and J. Albert, ACS Sustainable Chem. Eng., 2017, 5(5), 4110-4118.
- S7 M. A. Rezvani, S. Khandan and N. Sabahi, *Energy Fuels*, 2017, **31**, 5472-5481.
- S8 Y. Gao, Z. Lv, R. Gao, G. Zhang, Y. Zheng and J. Zhao, J. Hazard. Mater., 2018, 359, 258–265.