Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary Information

Syntheses, Structures and Characterization of Three New Mg-containing

Phosphates with Deep-UV Cut-off Edges

Zhen Qian,^a Hongping Wu,^a Hongwei Yu,^{*a} Zhanggui Hu,^a Jiyang Wang, ^a and Yicheng Wu^a

^aTianjin Key Laboratory of Functional Crystal Materials, Institute of Functional Crystal, Tianjin University of Technology, Tianjin 300384, China.

CONTENTS

1.	Table S1 (Atomic coordinates, displacement parameters and BVS)
2.	Table S2 (Selected bond distances and angles)S.
3.	Table S3 (The EDS results for $AMg_2P_3O_{10}$ (A = Li, Cs) and $Rb_2MgP_2O_7$)) S10
4.	Figure S1 (Experimental and calculated XRD patterns)S12
5.	Figure S2 (Coordination and connection of Rb in Rb ₂ MgP ₂ O ₇)S1
6.	Figure S3 (Structure of $LiMg_3P_3O_{10}$ viewed along the <i>a</i> , <i>b</i> and <i>c</i> axis)S14

er Emi 8 21 3 e 10.	eq is actine as			enanzea e j tens	611
Atom	Х	у	Z	U_{eq}	BVS
Li(1)	0	0	5000	29(2)	0.849
Mg(1)	10383(2)	665(1)	-1656(1)	7(1)	2.074
P(1)	6039(2)	2500	337(1)	4(1)	4.986
P(2)	4628(2)	2500	6438(1)	5(1)	4.923
P(3)	3329(2)	2500	3204(1)	5(1)	5.028
O(1)	7757(3)	993(2)	144(2)	7(1)	1.977
O(2)	2859(3)	1006(2)	6575(2)	8(1)	1.916
O(3)	2997(5)	2500	-577(2)	7(1)	1.979
O(4)	1594(3)	996(2)	3098(2)	10(1)	1.979
O(5)	7640(5)	2500	7395(2)	6(1)	1.982
O(6)	5553(5)	2500	4745(2)	7(1)	2.024
O(7)	5642(5)	2500	2085(2)	11(1)	2.204

Table S1a. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for LiMg₂P₃O₁₀. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

BVS
0.017
0.91/
2.119
4.967
4.991
1.999
2.009
1.828
1.837
1.921
2 1 1

Table S1b. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for CsMg₂P₃O₁₀. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Atom	Х	у	Z	U_{eq}	BVS
Mg(1)	3193(4)	2500	-1171(6)	22(2)	1.994
Rb(1)	831(1)	2500	6519(2)	30(1)	0.99
Rb(2)	1223(1)	7500	190(2)	31(1)	1.065
P(1)	2545(1)	2500	2161(5)	20(1)	5.142
P(2)	749(3)	2500	2702(5)	20(1)	5.169
O(1)	3076(8)	2500	890(12)	34(4)	1.927
O(2)	863(6)	141(13)	3547(10)	40(3)	1.811
O(3)	-11(9)	2500	1764(16)	56(4)	2.081
O(4)	1564(7)	2500	1607(12)	28(3)	2.344
O(5)	2657(5)	96(11)	3010(8)	27(2)	2.02

Table S1c. Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for Rb₂MgP₂O₇. U_{eq} is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

Li(1)-O(2)	1.9733(15)	O(4)#1-Li(1)-O(4)	180.00(4)
Li(1)-O(2)#1	1.9733(15)	O(3)-P(1)-O(1)	113.15(7)
Li(1)-O(4)#1	2.1207(17)	O(3)-P(1)-O(1)#8	113.15(7)
Li(1)-O(4)	2.1207(17)	O(1)-P(1)-O(1)#8	113.50(12)
Mg(1)-O(4)#2	2.0260(18)	O(3)-P(1)-O(7)	107.57(13)
Mg(1)-O(1)#4	2.0430(18)	O(1)-P(1)-O(7)	104.23(8)
Mg(1)-O(5)#5	2.0947(16)	O(1)#8-P(1)-O(7)	104.22(8)
Mg(1)-O(2)#6	2.0986(17)	O(2)#8-P(2)-O(2)	112.57(13)
Mg(1)-O(3)#7	2.1042(16)	O(2)#8-P(2)-O(5)	114.28(7)
Mg(1)-O(1)	2.1658(17)	O(2)-P(2)-O(5)	114.28(7)
P(1)-O(3)	1.514(2)	O(2)#8-P(2)-O(6)	106.86(8)
P(1)-O(1)	1.5174(16)	O(2)-P(2)-O(6)	106.86(8)
P(1)-O(1)#8	1.5174(16)	O(5)-P(2)-O(6)	100.69(12)
P(1)-O(7)	1.601(2)	O(4)-P(3)-O(4)#8	116.16(13)
P(2)-O(2)#8	1.5118(16)	O(4)-P(3)-O(7)	111.47(8)
P(2)-O(2)	1.5118(16)	O(4)#8-P(3)-O(7)	111.47(8)
P(2)-O(5)	1.518(2)	O(4)-P(3)-O(6)	108.95(8)
P(2)-O(6)	1.632(2)	O(4)#8-P(3)-O(6)	108.95(8)
P(3)-O(4)	1.4921(16)	O(7)-P(3)-O(6)	98.29(12)
P(3)-O(4)#8	1.4921(16)	O(4)#2-Mg(1)-O(1)#4	93.25(8)
P(3)-O(7)	1.562(2)	O(4)#2-Mg(1)-O(5)#5	93.60(7)
P(3)-O(6)	1.594(2)	O(1)#4-Mg(1)-O(5)#5	160.36(8)
O(1)-Mg(1)#4	2.0431(18)	O(4)#2-Mg(1)-O(2)#6	81.73(7)
O(2)-Mg(1)#3	2.0986(17)	O(1)#4-Mg(1)-O(2)#6	111.90(7)
O(3)-Mg(1)#10	2.1042(16)	O(5)#5-Mg(1)-O(2)#6	87.30(8)
O(3)-Mg(1)#11	2.1042(16)	O(4)#2-Mg(1)-O(3)#7	166.54(8)
O(4)-Mg(1)#2	2.0260(18)	O(1)#4-Mg(1)-O(3)#7	92.37(7)
O(5)-Mg(1)#12	2.0947(16)	O(5)#5-Mg(1)-O(3)#7	85.08(7)
O(5)-Mg(1)#13	2.0947(16)	O(2)#6-Mg(1)-O(3)#7	84.83(8)
O(2)-Li(1)-O(2)#1	180	O(4)#2-Mg(1)-O(1)	108.37(7)
O(2)-Li(1)-O(4)#1	82.41(6)	O(1)#4-Mg(1)-O(1)	79.58(7)
O(2)#1-Li(1)-O(4)#1	97.59(6)	O(5)#5-Mg(1)-O(1)	80.80(8)
O(2)-Li(1)-O(4)	97.59(6)	O(2)#6-Mg(1)-O(1)	164.75(8)
O(2)#1-Li(1)-O(4)	82.41(6)	O(3)#7-Mg(1)-O(1)	84.68(8)

Table S2a. Selected bond distances (Å) and angles (deg.) for $LiMg_2P_3O_{10}$.

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y,-z+1	#2 -x+1,-y,-z	#3 x-1,y,z+1	
#4 -x+2,-y,-z	#5 x,y,z-1	#6 x+1,y,z-1	
#7 x+1,y,z	#8 x,-y+1/2,z	#9 x-1,-y+1/2,z+1	
#10 x-1,y,z	#11 x-1,-y+1/2,2	z #12 x,-y+1/2,z+1	#13 x,y,z+1

Table S2b. Selected bond distances (Å) and angles (deg.) for $CsMg_2P_3O_{10}$.

Tuble SED. Sciected Sona dista	iees (i i) and ang	(deg.) for esting21 30 10.	
Cs(1)-O(2)#1	3.2701(19)	O(2)#1-Cs(1)-O(3)#2	44.24(5)
Cs(1)-O(2)	3.2701(19)	O(2)-Cs(1)-O(3)#2	146.91(5)
Cs(1)-O(3)#2	3.312(2)	O(2)#1-Cs(1)-O(3)#3	146.91(5)
Cs(1)-O(3)#3	3.312(2)	O(2)-Cs(1)-O(3)#3	44.24(5)
Cs(1)-O(3)#4	3.403(2)	O(3)#2-Cs(1)-O(3)#3	137.74(7)
Cs(1)-O(3)#5	3.403(2)	O(2)#1-Cs(1)-O(3)#4	69.22(5)
Cs(1)-O(4)#6	3.523(2)	O(2)-Cs(1)-O(3)#4	92.43(5)
Cs(1)-O(4)#7	3.523(2)	O(3)#2-Cs(1)-O(3)#4	91.04(3)
Mg(1)-O(5)#6	1.938(2)	O(3)#3-Cs(1)-O(3)#4	130.57(6)
Mg(1)-O(4)#10	1.985(2)	O(2)#1-Cs(1)-O(3)#5	92.43(5)
Mg(1)-O(1)	1.986(2)	O(2)-Cs(1)-O(3)#5	69.22(5)
Mg(1)-O(3)#11	2.009(2)	O(3)#2-Cs(1)-O(3)#5	130.57(6)
Mg(1)-O(1)#11	2.177(2)	O(3)#3-Cs(1)-O(3)#5	91.04(3)
P(1)-O(3)	1.492(2)	O(3)#4-Cs(1)-O(3)#5	43.97(7)
P(1)-O(3)#3	1.492(2)	O(2)#1-Cs(1)-O(4)#6	90.90(5)
P(1)-O(2)	1.588(2)	O(2)-Cs(1)-O(4)#6	103.71(5)
P(1)-O(2)#3	1.588(2)	O(3)#2-Cs(1)-O(4)#6	46.86(5)
P(2)-O(5)	1.491(2)	O(3)#3-Cs(1)-O(4)#6	98.22(5)
P(2)-O(4)	1.497(2)	O(3)#4-Cs(1)-O(4)#6	117.86(5)
P(2)-O(1)	1.527(2)	O(3)#5-Cs(1)-O(4)#6	157.49(5)
P(2)-O(2)	1.6448(19)	O(2)#1-Cs(1)-O(4)#7	103.71(5)
O(1)-Mg(1)#11	2.177(2)	O(2)-Cs(1)-O(4)#7	90.90(5)
O(3)-Mg(1)#11	2.009(2)	O(3)#2-Cs(1)-O(4)#7	98.22(5)
O(4)-Mg(1)#16	1.985(2)	O(3)#3-Cs(1)-O(4)#7	46.86(5)
O(5)-Mg(1)#4	1.938(2)	O(3)#4-Cs(1)-O(4)#7	157.49(5)
O(3)-Cs(1)#14	3.312(2)	O(3)#5-Cs(1)-O(4)#7	117.86(5)
O(3)-Cs(1)#13	3.403(2)	O(4)#6-Cs(1)-O(4)#7	82.79(7)
O(4)-Cs(1)#15	3.523(2)	O(3)-P(1)-O(3)#3	117.25(17)
O(5)#6-Mg(1)-O(4)#10	94.23(10)	O(3)-P(1)-O(2)	109.87(10)
O(5)#6-Mg(1)-O(1)	111.09(10)	O(3)#3-P(1)-O(2)	107.14(11)
O(4)#10-Mg(1)-O(1)	103.37(10)	O(3)-P(1)-O(2)#3	107.14(11)
O(5)#6-Mg(1)-O(3)#11	136.71(10)	O(3)#3-P(1)-O(2)#3	109.87(10)
O(4)#10-Mg(1)-O(3)#11	86.03(9)	O(2)-P(1)-O(2)#3	104.91(15)
O(1)-Mg(1)-O(3)#11	110.91(9)	O(5)-P(2)-O(4)	116.65(13)
O(5)#6-Mg(1)-O(1)#11	90.09(9)	O(5)-P(2)-O(1)	114.28(12)
O(4)#10-Mg(1)-O(1)#11	172.94(9)	O(4)-P(2)-O(1)	111.39(12)
O(1)-Mg(1)-O(1)#11	80.19(9)	O(5)-P(2)-O(2)	103.03(11)
O(3)#11-Mg(1)-O(1)#11	87.00(8)	O(4)-P(2)-O(2)	105.45(11)
O(2)#1-Cs(1)-O(2)	160.61(7)	O(1)-P(2)-O(2)	104.44(11)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,y,-z+1/2 #2 x+1,y,z #3 -x,y,-z+1/2 #4 -x+1/2,y+1/2,z #5 x+1/2,y+1/2,-z+1/2 #6 -x+1/2,y-1/2,z #7 x+1/2,y-1/2,-z+1/2 #8 -x+1,-y,-z #9 x,-y,z+1/2 #10 x+1/2,-y+1/2,-z #11 -x,-y,-z #12 -x+1/2,-y+1/2,z-1/2 #13 x-1/2,y-1/2,-z+1/2 #14 x-1,y,z #16 x-1/2,-y+1/2,-z #15 x-1/2,y+1/2,-z+1/2

Table S2c. Selected bond distances (Å) and angles (deg.) for $Rb_2MgP_2O_7$.

Table 520. Beleeted bolla distalle			
P(1)-O(1)	1.473(12)	O(2)#13-Rb(1)-O(2)	100.33(19)
P(1)-O(5)#1	1.509(7)	O(5)#14-Rb(1)-O(2)	126.1(2)
P(1)-O(5)	1.509(7)	O(5)#11-Rb(1)-O(2)	103.8(2)
P(1)-O(4)	1.621(12)	O(2)#6-Rb(1)-O(2)#1	100.33(19)
P(2)-O(3)	1.488(14)	O(2)#13-Rb(1)-O(2)#1	79.1(3)
P(2)-O(2)#1	1.488(8)	O(5)#14-Rb(1)-O(2)#1	103.8(2)
P(2)-O(2)	1.488(8)	O(5)#11-Rb(1)-O(2)#1	126.1(2)
P(2)-O(4)	1.648(12)	O(2)-Rb(1)-O(2)#1	46.9(3)
Mg(1)-O(1)	1.984(13)	O(2)#6-Rb(1)-O(1)#2	148.4(2)
Mg(1)-O(2)#8	2.038(9)	O(2)#13-Rb(1)-O(1)#2	95.1(3)
Mg(1)-O(2)#4	2.038(9)	O(5)#14-Rb(1)-O(1)#2	46.6(3)
Mg(1)-O(5)#4	2.055(8)	O(5)#11-Rb(1)-O(1)#2	92.3(3)
Mg(1)-O(5)#8	2.055(8)	O(2)-Rb(1)-O(1)#2	98.3(3)
O(1)-Rb(1)#3	3.182(8)	O(2)#1-Rb(1)-O(1)#2	59.4(2)
O(1)-Rb(1)#4	3.182(8)	O(2)#6-Rb(1)-O(1)#11	95.1(3)
O(2)-Mg(1)#11	2.038(9)	O(2)#13-Rb(1)-O(1)#11	148.4(2)
O(2)-Rb(1)#6	2.984(10)	O(5)#14-Rb(1)-O(1)#11	92.3(3)
O(2)-Rb(1)	3.106(10)	O(5)#11-Rb(1)-O(1)#11	46.6(3)
O(2)-Rb(2)#5	3.548(11)	O(2)-Rb(1)-O(1)#11	59.4(2)
O(3)-Rb(2)#12	2.662(15)	O(2)#1-Rb(1)-O(1)#11	98.3(3)
O(3)-Rb(1)#6	3.347(10)	O(1)#2-Rb(1)-O(1)#11	110.7(4)
O(3)-Rb(1)#7	3.347(10)	O(2)#6-Rb(1)-O(3)#6	46.3(3)
O(3)-Rb(2)	3.582(11)	O(2)#13-Rb(1)-O(3)#6	92.0(3)
O(3)-Rb(2)#5	3.582(11)	O(5)#14-Rb(1)-O(3)#6	114.2(3)
O(4)-Rb(2)#5	2.997(7)	O(5)#11-Rb(1)-O(3)#6	73.7(3)
O(4)-Rb(2)	2.997(7)	O(2)-Rb(1)-O(3)#6	98.4(3)
O(5)-Mg(1)#11	2.055(8)	O(2)#1-Rb(1)-O(3)#6	140.2(3)
O(5)-Rb(2)#2	3.003(8)	O(1)#2-Rb(1)-O(3)#6	160.3(3)
O(5)-Rb(1)#4	3.075(8)	O(1)#11-Rb(1)-O(3)#6	69.8(3)
Rb(1)-O(2)#6	2.984(10)	O(2)#6-Rb(1)-O(3)#7	92.0(3)
Rb(1)-O(2)#13	2.984(10)	O(2)#13-Rb(1)-O(3)#7	46.3(3)
Rb(1)-O(5)#14	3.075(9)	O(5)#14-Rb(1)-O(3)#7	73.7(3)
Rb(1)-O(5)#11	3.075(8)	O(5)#11-Rb(1)-O(3)#7	114.2(3)
Rb(1)-O(2)#1	3.106(10)	O(2)-Rb(1)-O(3)#7	140.2(3)
Rb(1)-O(1)#2	3.182(8)	O(2)#1-Rb(1)-O(3)#7	98.4(3)
Rb(1)-O(1)#11	3.182(8)	O(1)#2-Rb(1)-O(3)#7	69.8(3)
Rb(1)-O(3)#6	3.347(10)	O(1)#11-Rb(1)-O(3)#7	160.3(3)
Rb(1)-O(3)#7	3.347(10)	O(3)#6-Rb(1)-O(3)#7	102.9(4)
Rb(2)-O(3)#12	2.662(15)	O(3)#12-Rb(2)-O(4)#15	116.4(2)
Rb(2)-O(4)#15	2.997(7)	O(3)#12-Rb(2)-O(4)	116.4(2)
Rb(2)-O(5)#8	3.003(8)	O(4)#15-Rb(2)-O(4)	121.8(4)

Rb(2)-O(5)#3	3.003(8)	O(3)#12-Rb(2)-O(5)#8	85.6(4)
Rb(2)-O(2)#15	3.548(11)	O(4)#15-Rb(2)-O(5)#8	125.3(3)
Rb(2)-O(2)#1	3.548(11)	O(4)-Rb(2)-O(5)#8	81.1(3)
Rb(2)-O(3)#15	3.582(11)	O(3)#12-Rb(2)-O(5)#3	85.6(4)
O(1)-P(1)-O(5)#1	112.4(4)	O(4)#15-Rb(2)-O(5)#3	81.1(3)
O(1)-P(1)-O(5)	112.4(4)	O(4)-Rb(2)-O(5)#3	125.3(3)
O(5)#1-P(1)-O(5)	113.1(6)	O(5)#8-Rb(2)-O(5)#3	49.6(3)
O(1)-P(1)-O(4)	105.1(7)	O(3)#12-Rb(2)-O(2)#15	121.8(3)
O(5)#1-P(1)-O(4)	106.6(4)	O(4)#15-Rb(2)-O(2)#15	43.6(2)
O(5)-P(1)-O(4)	106.6(4)	O(4)-Rb(2)-O(2)#15	87.6(3)
O(3)-P(2)-O(2)#1	115.1(5)	O(5)#8-Rb(2)-O(2)#15	152.5(2)
O(3)-P(2)-O(2)	115.1(5)	O(5)#3-Rb(2)-O(2)#15	124.1(2)
O(2)#1-P(2)-O(2)	112.2(8)	O(3)#12-Rb(2)-O(2)#1	121.8(3)
O(3)-P(2)-O(4)	103.2(7)	O(4)#15-Rb(2)-O(2)#1	87.6(3)
O(2)#1-P(2)-O(4)	104.8(5)	O(4)-Rb(2)-O(2)#1	43.6(2)
O(2)-P(2)-O(4)	104.8(5)	O(5)#8-Rb(2)-O(2)#1	124.1(2)
O(1)-Mg(1)-O(2)#8	101.4(4)	O(5)#3-Rb(2)-O(2)#1	152.5(2)
O(1)-Mg(1)-O(2)#4	101.4(4)	O(2)#15-Rb(2)-O(2)#1	45.9(2)
O(2)#8-Mg(1)-O(2)#4	85.5(5)	O(3)#12-Rb(2)-O(3)	85.1(3)
O(1)-Mg(1)-O(5)#4	108.8(4)	O(4)#15-Rb(2)-O(3)	122.9(3)
O(2)#8-Mg(1)-O(5)#4	149.8(5)	O(4)-Rb(2)-O(3)	42.8(3)
O(2)#4-Mg(1)-O(5)#4	88.1(3)	O(5)#8-Rb(2)-O(3)	107.4(2)
O(1)-Mg(1)-O(5)#8	108.8(4)	O(5)#3-Rb(2)-O(3)	155.9(2)
O(2)#8-Mg(1)-O(5)#8	88.1(3)	O(2)#15-Rb(2)-O(3)	79.5(3)
O(2)#4-Mg(1)-O(5)#8	149.8(5)	O(2)#1-Rb(2)-O(3)	41.3(3)
O(5)#4-Mg(1)-O(5)#8	82.8(5)	O(3)#12-Rb(2)-O(3)#15	85.1(3)
O(2)#6-Rb(1)-O(2)#13	55.2(3)	O(4)#15-Rb(2)-O(3)#15	42.8(3)
O(2)#6-Rb(1)-O(5)#14	153.4(3)	O(4)-Rb(2)-O(3)#15	122.9(3)
O(2)#13-Rb(1)-O(5)#14	119.0(2)	O(5)#8-Rb(2)-O(3)#15	155.9(2)
O(2)#6-Rb(1)-O(5)#11	119.0(2)	O(5)#3-Rb(2)-O(3)#15	107.4(2)
O(2)#13-Rb(1)-O(5)#11	153.4(3)	O(2)#15-Rb(2)-O(3)#15	41.3(3)
O(5)#14-Rb(1)-O(5)#11	52.5(3)	O(2)#1-Rb(2)-O(3)#15	79.5(3)
O(2)#6-Rb(1)-O(2)	79.1(3)	O(3)-Rb(2)-O(3)#15	93.9(4)

Symmetry transformations used to generate equivalent atoms:

#1 x,-y+1/2,z #2 -x+1/2,-y+1,z+1/2 #3 -x+1/2,-y+1,z-1/2 #4 -x+1/2,-y,z-1/2 #5 x,y-1,z #6 -x,-y,-z+1 #7 -x,-y+1,-z+1 #8 -x+1/2,y+1/2,z-1/2 #9 x+1/2,y,-z+1/2 #10 x,y,z-1 #11 -x+1/2,-y,z+1/2 #12 -x,-y+1,-z #13 -x,y+1/2,-z+1 #14 -x+1/2,y+1/2,z+1/2 #15 x,y+1,z

(a)								
Point 1				Point 2				
Element	Weight %	Atomic %	Formula	Element	Weight % Atomic % For		Formula	
Mg	15.75	17.98	2.0	Mg	15.85	17.79	2.0	
Р	30.12	32.28	3.2	Р	31.23	33.32	3.1	
0	54.13	49.74		0	52.92	48.89		
Toals	100			Toals	100			
	Poi	int 3			•			
Element	Weight %	Atomic %	Formula					
Mg	16.83	18.23	2.1					
Р	29.82	32.35	3.0		Avera	ge rano		
0	53.35	49.42			Ma	D		
Toals	100				$Mg_{2.0}P_{3.1}$			
			()	b)				
	Poi	int 1		Point 2				
Element	Weight %	Atomic %	Formula	Element	Weight %	Atomic %	Formula	
Cs	31.59	9.89	1.1	Cs	32.31	9.93	1.2	
Mg	12.12			1			1	
-	12.13	18.37	2.0	Mg	13.15	19.02	2.0	
Р	20.83	18.37 31.56	2.0 3.1	Mg P	13.15 21.02	19.02 30.79	2.0 3.0	
P O	20.83 35.45	18.37 31.56 40.81	2.0 3.1	Mg P O	13.15 21.02 33.52	19.02 30.79 40.26	2.0 3.0	
P O Toals	20.83 35.45 100	18.37 31.56 40.81	2.0 3.1	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26	2.0 3.0	
P O Toals	20.83 35.45 100 Poi	18.37 31.56 40.81 □ nt 3	2.0 3.1	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26 □	2.0 3.0	
P O Toals Element	20.83 35.45 100 Weight %	18.37 31.56 40.81 □ int 3 Atomic %	2.0 3.1 	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26 □ □ □	2.0 3.0	
P O Toals Element Cs	20.83 35.45 100 Weight % 30.87	18.37 31.56 40.81 □ int 3 Atomic % 9.35	2.0 3.1 	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26 □ □ □	2.0 3.0	
P O Toals Element Cs Mg	20.83 35.45 100 Weight % 30.87 12.34	18.37 31.56 40.81 Int 3 Atomic % 9.35 19.15	2.0 3.1 Formula 1.0 2.1	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26 □ □ ge ratio	2.0 3.0 	
P O Toals Element Cs Mg P	20.83 35.45 100 Weight % 30.87 12.34 21.83	18.37 31.56 40.81 □ int 3 Atomic % 9.35 19.15 29.89	2.0 3.1 Formula 1.0 2.1 3.2	Mg P O Toals	13.15 21.02 33.52 100	19.02 30.79 40.26 	2.0 3.0	
P O Toals Element Cs Mg P O	20.83 35.45 100 Weight % 30.87 12.34 21.83 34.96	18.37 31.56 40.81 Image: Instant 3 Atomic % 9.35 19.15 29.89 41.61	2.0 3.1 Formula 1.0 2.1 3.2	Mg P O Toals	13.15 21.02 33.52 100 Averag	19.02 30.79 40.26	2.0 3.0 	

Table S3. EDS results for $LiMg_2P_3O_{10}$ (a), $CsMg_2P_3O_{10}$ (b) and $Rb_2MgP_2O_7$ (c).

(c)								
	Poi	nt 1		Point 2				
Element	Weight %	Atomic %	Formula	Element Weight % Atomic % Fo			Formula	
Rb	48.73	18.78	2.1	Cs	47.76	19.39	2.2	
Mg	6.23	13.23	1.2	Mg	7.45	10.32	1.0	
Р	15.98	19.54	2.2	Р	17.48	18.43	2.2	
0	29.06	48.45		0	27.31	51.86		
Toals	100			Toals	100			
	Poi	nt 3						
Element	Weight %	Atomic %	Formula					
Cs	45.36	20.32	2.0		Average ratio \Box			
Mg	5.98	9.97	1.1					
Р	15.87	17.63	2.1		$Rb_{2.1}Mg_{1.1}P_{2.1}$			
0	32.79	52.08						
Toals	100							

Figure S1. Experimental and calculated XRD patterns for (a) $LiMg_2P_3O_{10}$, (b) $CsMg_2P_3O_{10}$ and (c) $Rb_2MgP_2O_7$.

Figure S2. (a) The ten-coordinated Rb(1) and nine-coordinated Rb(2) cations; (b) the 2D Rb-O layers extending in *ac* plane; (c) the 2D Rb-O layers extending in *bc* plane.

Figure S3. Structure of $LiMg_3P_3O_{10}$ viewed along the (a) *a*-axis, (b) *b*-axis and (c) *c*-axis directions.