Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supporting Information

Synthesis, characterization and crystal structure of a new mixed alkali and

alkaline-earth metal borate Rb₉Ba₂₄(BO₃)₁₉

Xiaowen Niu,^a and Li Wang*,^a

^aCollege of Chemistry and Chemical Engineering, Xinjiang Normal University, Urumqi, Xinjiang

830054, China

*Corresponding author, E-mail: wangliresearch@163.com.

Atoms	x	У	Ζ	U(eq)	BVS
Ba(1)	4375(1)	5625(1)	3539(1)	12(1)	1.8
Ba(2)	3032(1)	3032(1)	5000	9(1)	2.2
Ba(3)	0	3644(1)	0	10(1)	2.3
Ba(4)	1130(1)	2260(1)	1578(1)	16(1)	2.1
Rb(1)	0	0	5000	90(2)	0.9
Rb(2)	4668(1)	2334(1)	2062(2)	36(1)	0.8
Rb(3)	3333	6667	905(3)	39(1)	0.7
B(1)	2216(4)	4433(7)	2833(14)	10(2)	2.9
B(2)	5443(4)	4557(4)	2189(14)	10(2)	2.8
B(3)	2532(7)	1266(4)	2757(15)	13(2)	2.9
B(4)	0	0	0	40(1)	/
O(1)	2633(3)	5266(5)	3643(11)	27(2)	1.9
O(2)	2703(3)	3999(3)	2405(6)	13(1)	2.0
O(3)	4647(3)	3952(3)	3118(6)	16(1)	2.0
O(4)	5604(3)	4396(3)	422(9)	22(2)	1.7
O(5)	2644(3)	2026(3)	1806(6)	15(1)	2.0
O(6)	2412(5)	1206(3)	4621(8)	20(2)	1.8
O(7)	712(17)	356(9)	1080(40)	106(10)	1.7

Table S1. Atomic coordinates (×10⁴), equivalent isotropic displacement parameters (Å² × 10³) and bond valence sums (BVS) calculation for $Rb_9Ba_{24}(BO_3)_{19}$.

Note: The BVS for the B(4) atom which is coordinated with disordered O(7) atoms was not calculated.

	Rb ₉ Ba ₂	₄ B ₁₉ O ₅₄	
Rb(1)-O(7)#1	3.040(3)	Ba(2)-O(6)#1	2.745(3)
Rb(1)-O(7)#2	3.040(3)	Ba(2)-O(3)	2.749(5)
Rb(1)-O(7)#3	3.040(3)	Ba(2)-O(3)#16	2.749(5)
Rb(1)-O(7)#4	3.040(3)	Ba(2)-O(5)	2.764(4)
Rb(1)-O(7)	3.040(3)	Ba(2)-O(5)#16	2.764(4
Rb(1)-O(7)#5	3.040(3)	Ba(3)-O(2)#13	2.636(4)
Rb(1)-O(6)#4	3.557(8)	Ba(3)-O(2)#18	2.636(4)
Rb(1)-O(6)#3	3.557(8)	Ba(3)-O(3)#18	2.727(4)
Rb(1)-O(6)#1	3.557(8)	Ba(3)-O(3)#13	2.727(4)
Rb(1)-O(6)#2	3.557(8)	Ba(3)-O(5)#13	2.738(5)
Rb(1)-O(6)	3.557(8)	Ba(3)-O(5)#18	2.738(5)
Rb(1)-O(6)#5	3.557(8)	Ba(3)-O(4)#11	2.923(5)
Rb(2)-O(3)	2.870(5)	Ba(3)-O(4)#13	2.923(5)
Rb(2)-O(3)#6	2.870(5)	Ba(4)-O(6)#1	2.777(6)
Rb(2)-O(5)#6	3.212(5)	Ba(4)-O(5)	2.795(5)
Rb(2)-O(5)	3.212(5)	Ba(4)-O(5)#18	2.796(5)
Rb(2)-O(1)#4	3.249(8)	Ba(4)-O(5)#9	2.796(4)
Rb(2)-O(4)	3.263(5)	Ba(4)-O(5)#13	2.796(4)
Rb(2)-O(4)#7	3.263(5)	Ba(4)-O(2)#18	2.886(4)
Rb(2)-O(2)#8	3.602(5)	Ba(4)-O(2)	2.886(4)
Rb(2)-O(2)#9	3.602(5)	Ba(4)-O(7)	2.964(6)
Rb(3)-O(1)#11	2.866(8)	Ba(4)-O(7)#3	2.964(6)
Rb(3)-O(1)	2.866(8)	Ba(4)-O(7)#13	2.990(3)
Rb(3)-O(1)#12	2.866(8)	B(1)-O(1)	1.360(13)
Rb(3)-O(4)#10	3.272(7)	B(1)-O(2)#18	1.389(7)
Rb(3)-O(4)#13	3.272(7)	B(1)-O(2)	1.389(7)
Rb(3)-O(4)#14	3.272(7)	B(2)-O(4)	1.371(12)
Ba(1)-O(1)#12	2.706(16)	B(2)-O(3)#17	1.396(7)
Ba(1)-O(1)	2.706(17)	B(2)-O(3)	1.396(7)
Ba(1)-O(3)#15	2.829(4)	B(3)-O(6)	1.369(12)
Ba(1)-O(3)#16	2.829(4)	B(3)-O(5)#6	1.391(7)
Ba(1)-O(4)#10	2.886(6)	B(3)-O(5)	1.391(7)
Ba(1)-O(2)#17	2.920(4)	B(4)-O(7)#20	1.310(3)
Ba(1)-O(2)	2.920(4)	B(4)-O(7)#8	1.310(3)
Ba(1)-O(3)#17	3.112(5)	B(4)-O(7)#3	1.310(3)
Ba(1)-O(3)	3.112(5)	B(4)-O(7)#2	1.310(3)
Ba(2)-O(2)#16	2.738(4)	B(4)-O(7)#13	1.310(3)
Ba(2)-O(2)	2.738(4)	B(4)-O(7)	1.310(3)
Ba(2)-O(6)	2.745(3)		
O(1)-B(1)-O(2)#18	120.7(4)	O(7)#20-B(4)-O(7)#2	92.2(18)
O(1)-B(1)-O(2)	120.7(4)	O(7)#8-B(4)-O(7)#2	92.2(18)
O(2)#18-B(1)-O(2)	118.5(8)	O(7)#3-B(4)-O(7)#2	87.8(18)

Table S2. Selected bond lengths (Å) and angles (°) for $Rb_9Ba_{24}(BO_3)_{19}$.

O(4)-B(2)-O(3)#17	121.6(4)	O(7)#20-B(4)-O(7)#13	87.8(18)
O(4)-B(2)-O(3)	121.6(4)	O(7)#8-B(4)-O(7)#13	87.8(18)
O(3)#17-B(2)-O(3)	116.8(8)	O(7)#3-B(4)-O(7)#13	92.2(18)
O(6)-B(3)-O(5)#6	120.6(4)	O(7)#2-B(4)-O(7)#13	180.0(2)
O(6)-B(3)-O(5)	120.6(4)	O(7)#20-B(4)-O(7)	180.0(3)
O(5)#6-B(3)-O(5)	118.4(8)	O(7)#8-B(4)-O(7)	92.2(18)
O(7)#20-B(4)-O(7)#8	87.8(18)	O(7)#3-B(4)-O(7)	87.8(18)
O(7)#20-B(4)-O(7)#3	92.2(18)	O(7)#2-B(4)-O(7)	87.8(18)
O(7)#8-B(4)-O(7)#3	180.0(3)	O(7)#13-B(4)-O(7)	92.2(18)

Symmetry transformations used to generate equivalent atoms:

#1 x-y,x,-z+1#2 -x+y,-x,z#3 -y,x-y,z#4 y,-x+y,-z+1#5 -x,-y,-z+1#6 x,x-y,z#7 -y+1,x-y,z#8 y,-x+y,-z#9 y,x,-z#10 -x+1,-y+1,-z#11 -x+y,-x+1,z#12 -y+1,x-y+1,z#13 x-y,x,-z#14 y,-x+y+1,-z#15 -x+1,-y+1,-z+1#16 y,x,-z+1#17 -y+1,-x+1,z#18 -x+y,y,z#19 -x+y+1,-x+1,z#20 -x,-y,-z#21 x,y,z-1

Figure S1: The crystal photo of $Rb_9Ba_{24}(BO_3)_{19}$.

Formula	Space group	FBB	Refs
LiMgBO ₃	C2/c	Isolated BO ₃ units	S1
RbMgBO ₃	<i>P</i> 2 ₁ 3	Isolated BO ₃ units	S2
LiCaBO ₃	Pbca	Isolated BO ₃ units	S3
RbCaBO ₃	<i>P</i> 2 ₁ 3	Isolated BO3units	S4
$Li_2Rb_7Sr_{24}(BO_3)_{19}$	$P^{\overline{3}}m1$	Isolated BO3 units	S5
Rb ₉ Ba ₂₄ (BO ₃) ₁₉	$P\bar{3}m1$	Isolated BO3 units	This work

Table S3. The Li⁺/Rb⁺ substitution in a series of anhydrous mixed alkali and alkaline-earth metal borates space group and B-O configurations in the structures.

Figure S2. Crystal structures of (a) LiCaBO₃, (b) RbCaBO₃, (c) LiMgBO₃, (d) RbMgBO₃, (e) Li₂Rb₇Sr₂₄(BO₃)₁₉, (f) Rb₉Ba₂₄(BO₃)₁₉.

References

S1 R. Norrestam, Z Krist.-Cryst. Mater., 1989, 187, 103.

S2 (a) R. V. Kurbatov, L. A. Solovyov, B. G. Bazarov, A. K. Subanakov and J. G. Bazarova, *Solid State Commun.*, 2013, **172**, 33. (b) Z. Wang, M. Zhang, S. L. Pan, Z. H. Yang, H. Zhang, B. B. Zhang, Y. Wang, J. Kang and X. X. Lin, *New J. Chem.*, 2014, **38**, 3035.

- S3 L. Wu, X. L. Chen, H. Li, M. He, L. Dai, X. Z. Li and Y. P. Xu, Solid State Commun., 2004, 177, 1111.
- S4 M. Wen, H. P. Wu, X. Su, J. J. Lu, Z. H. Yang, X. H. Wu and S. L. Pan, *Dalton. Trans.*, 2017, 46, 15, 4968.
- S5 R. R. Ma, Y. Yang, C. Hu, Z. H. Yang and S. L. Pan, Chem. Eur. J., 2018, 24, 15355.