Electronic Supplementary Material (ESI) for New Journal of Chemistry. This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2020

Electronic Supplementary information (ESI)

A facile synthesis for layered double hydroxide based core@shell hybrid materials

Meng Lyu, Chunping Chen, Jean-Charles Buffet, and Dermot O'Hare

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.

Table of Contents

1. Ex	perimental details	2
1.1.	General information	2
1.2.	Synthesis of Mg-MOF-74	2
1.3.	Characterisation	2
2. Ad	ditional Characterising Data	4
2.1.	$Z13X@Mg_2AILDH$	4
2.2.	Z13X@Mg ₂ Al LDHs with varied dropping time and ageing time	9
2.3.	Mg-MOF-74@Mg ₂ Al-CO ₃ LDHs	12
3. Re	eference	15

1. Experimental details

1.1. General information

1.1.1. Materials

Zeolite 13X (Si/Al 1.23:1, Alfa Aesar); magnesium nitrate hexahydrate (Mg(NO₃)₂·6H₂O, AR, Sigma-Aldrich); aluminum nitrate nonahydrate (Al(NO₃)₃)·9H₂O, AR, Sigma-Aldrich); sodium hydroxide (NaOH, AR, Sigma-Aldrich); sodium carbonate (Na₂CO₃, AR, Sigma-Aldrich); 2,5-Dihydroxyterephthalic acid (H₄DHTP, AR, Fluorochem). All chemicals and materials were used without further purification. All reference to 'water' or 'H₂O' refer to deionised water.

1.2. Synthesis of Mg-MOF-74

Mg-MOF-74 was synthesised according to the revised method reported in the literature. Mg(NO₃)₂·6H₂O (0.67 g, 2.60 mmol) was dissolved in a solvent mixture (70 mL) of *N*,*N*-dimethylformamide (DMF), ethanol and DI water (15: 1: 1, v/v/v) with 2,5-dihydroxybenzene carboxylic acid (0.16 g, 0.78 mmol) and trimethylamine (TEA, 0.1 mL) under stirring. The resulting mixture was placed in a 100 mL Duran bottle and heated at 125 °C for 24 hours under static condition to afford dark-yellow crystals. The solid was collected by filtration and washed with DMF (3 X 20 mL) and methanol before being soaked in methanol (70 mL). The methanol was decanted and replaced three times for three days. Finally, the solid was collected by filtration and dried under vacuum at 30 °C overnight

1.3. Characterisation

Powder X-ray diffraction (PXRD) analysis was carried out using a PANAnalytical X'Pert Pro Diffractometer in scanning mode using Cu K α radiation (α 1= 1.540598 Å, α 2 = 1.544426 Å). The sample was packed on a stainless steel holders which resulted in peaks at 43.36, 44.29, and 50.51° which did not interfere with the analysis. Signals between 2 θ = 3 - 70° were recorded with step size 0.0167°. Pawley and Retvield refinement were conducted using TOPAS-Academic V6.¹

Scanning electron microscopy (SEM) images and Energy dispersive X-ray spectroscopy (EDS) mappings were obtained from a JOEL JSM-6610LV low vacuum scanning electron microscope at the Harwell Research Complex with an accelerating voltage of 10 kV or a Zeiss EVO scanning electron microscope with an accelerating voltage of 5 kV.

Transmission electron microscopy (TEM) images, EDS mappings were obtained from a JEOL-2100 electron microscope at the Harwell Research Complex with an accelerating voltage of 200 kV using a single tilt specimen.

Fourier transform Infrared spectroscopy (FTIR) was conducted using a ThermoScientific Nicolet iS5 spectrometer fitted with an iD3 attenuated total reflection stage. Signals between $4000 - 700 \text{ cm}^{-1}$ wavelength were recorded at 4 cm⁻¹ resolution.

The solid-state DPMAS ²⁷Al and DPMAS ²⁹Si nuclear magnetic resonance (NMR) spectra were obtained on a Bruker Avance IIIHD spectrometer using 4.0 mm O.D zirconia rotors by Dr. Nick Rees, University of Oxford. The ²⁷Al NMR spectroscopy was recorded at 104.2 MHz (9.4 T) at a MAS rate of 10 kHz. A single pulse excitation was applied using a short pulse width (0.23 μ s) to get the quantitative MAS spectra. Typically, 16725 scans were acquired with a 0.1 s delay. The ²⁷Al chemical shifts in the spectroscopy are referenced to the aqueous solution of Al(NO₃)₃ (0 ppm).

The ²⁹Si NMR spectroscopy was recorded at 79.4 MHz (9.4 T) at a 10 kHz spinning. An onepulse sequence and spinal64 proton decoupling was applied to get the quantitative MAS spectra. Typically, 2619 transients were acquired with a 30 s delay. The ²⁹Si chemical shifts are referenced to kaolinite (with chemical shift $\delta = -91.7$ ppm on a scale where δ (TMS) = 0) as a secondary reference.

Thermogravimetric analyses (TGA) were performed under nitrogen atmosphere using PerkinElmer TGA 8000. The weight change between 30 - 800 °C was recorded with 5 °C/min ramp rate.

Elemental analyses (EA) were performed by Mr. Setphen Boyer at the Science Centre, London Metropolitan University. The quantitative oxidative combustion technique was applied to test the carbon, hydrogen nitrogen weight percent in the sample. Two measurements were taken and the average value was reported.

Inductively coupled plasma mass spectrometry (ICP-MS) analyses were performed by Dr. Alaa Abdul-Sada at University of Sussex using an Agilent 7500 series ICP-MS in helium collision mode to obtain the weight percent of sodium, magnesium, aluminium, silicon in the sample. Approximately 10 mg of sample was digested in concentrated nitric acid. The mixture was then diluted by a factor of 10 with dilute nitric acid before the analysis. Each mixture was analysed for three times and the average value was reported.

Brunauer-Emmett-Teller (BET) method analysis was carried out using a Micromeritics 3Flex. The N₂ adsorption and desorption of samples were taken at -196 °C. Before the measurement, Z13X, Z13X@Mg₂Al-CO₃ LDH and Mg₂Al-CO₃ LDH were *ex-situ* degassed overnight at 200 °C and then *in-situ* degassed at 200 °C for 3 hours. Before the measurement, Mg-MOF-74 and MOF@Mg₂Al-CO₃ LDH were *in-situ* degassed at 250 °C for 5 hours.

2. Additional Characterising Data

- 2.1. Z13X@Mg₂Al LDH
- 2.1.1. SEM data

Fig. S1. The SEM image of the commercial Zeolite 13X (a) at the 10 μ m scale and (b) at the 1 μ m scale.

2.1.2. XRD data and Pawley refinement

Fig. S2. The PXRD pattern of the original Zeolite 13X (Z13X).

Fig. S3. XRD patterns of (a) the commercial Z13X (black) and the extracted individual phase of Z13X in Z13X@Mg₂Al-CO₃ LDH from the Pawley refinement (red) and (b) Mg₂Al-CO₃ LDH (blue) and the extracted individual phase of LDH in Z13X@Mg₂Al-CO₃ LDH from the Pawley refinement (red). * indicates peak rising from sample holder.

Single phase component	Zeolite 13X	LDH			
Crystal system	Fajusite	Rhombohedral (Hexagonal			
		setting)			
Space group	Fd -3	R -3m :H			
a / Å	24.970	3.046			
b / Å	24.970 3.046				
c / Å	24.970 22.96				
α/ °	90	90			
β/ °	90	90			
γ/ °	90	120			
λ/Å	1.5	406			
Refinement type	Pav	vley			
Rp / %	4.682				
Rwp / %	6.578				
Rp' /%	8.989				
Rwp' / %	10.720				
Software	TOPAS-Ad	cademic V6			

2.1.3. FTIR data

Fig. S4. The FTIR spectra of the Z13X (black), Z13X@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue). Features around 2000 cm⁻¹ are signals from sample stage.

2.1.4. Solid state NMR spectroscopy data

Table S2. Silicon environment in Z13X and Z13X@Mg₂Al LDH from ²⁹Si MAS solid-state NMR spectroscopy.

Assignment	Z1	3X	Z13X@Mg ₂ Al LDH			
	Position	Integration	Position	Integration		
Q ⁴ Si(4Al)	-84.2	41.96%	-84.4	34.43%		
Q ⁴ Si(3Al)	-88.8	27.38%	-89.1	23.68%		
Q ⁴ Si(2Al)	-93.5	15.82%	-94.0	13.33%		
Q ⁴ Si(1Al)	-98.1	4.51%	-98.8	4.51%		
	-102.0	3.88%	-103.4	9.86%		
Q ⁴ Si(0Al)	-111.2	5.75%	-110.9	9.74%		
	-117.7	0.69%	-116.9	4.44%		

Equation S1. Loewenstein's rule equation.^{2–4}

$$\frac{Si}{Al} = \frac{\sum_{x=0}^{4} I_{Si(OAl)_{x}}}{0.25 \sum_{x=0}^{4} x I_{Si(OAl)_{x}}}$$

Fig. S5. ²⁷Al DP-MAS ssNMR spectra of the Z13X (black), Z13X@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue). Two overlapped octahedral Al peaks can be observed from the Mg₂Al-CO₃ LDH and Z13X@Mg₂Al-CO₃ LDH ²⁷Al ssNMR spectra.⁵

2.1.5. TGA data

Fig. S6. TGA and DTG plots of the Z13X (black), Z13X@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue).

2.1.6. N_2 adsorption-desorption isotherms and porosity data

Fig. S7. N₂ adsorption-desorption isotherm of the Z13X (black), Z13X@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue).

Fig. S8. Pore size distribution of the Z13X (black), Z13X@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue). (a) is the zoom-in of 2.5-25 Å pore width and (b) is the zoom-in of 25-600 Å pore width.

- 2.2. Z13X@Mg₂Al LDHs with varied dropping time and ageing time
- 2.2.1. XRD data

Fig. S9. XRD spectra of Z13X@Mg₂Al-CO₃ LDHs with different dropping time.

Fig. S10. XRD spectra of Z13X@Mg₂Al-CO₃ LDHs with different ageing time.

2.2.2. TEM images

Fig. S11. TEM images of Z13X@Mg₂Al-CO₃ LDH core-shells with different dropping time and ageing time.

2.2.3. TGA plots

Fig. S12. TGA plots of Z13X@Mg₂Al-CO₃ LDH core-shells with different dropping time.

Fig. S13. TGA plots of Z13X@Mg₂Al-CO₃ LDH core-shells with different ageing time.

2.2.4. BET specific surface area data

Table S3. S	summary o	of the N_2	BET s	pecific	surface	areas	and	pore	volumes	of Z1	3X@M	$[g_2Al-C]$	O_3
LDH with v	aried drop	ping time	and a	geing ti	me								

Entry	Samples		Surface area (m²/g)					
		BET	External	Micropore	(cm ³ /g)			
1	D2A1	449 ± 0.44	67	382	0.14626			
2	D1.5A1	458 ± 0.67	72	386	0.14888			
3	D1A1	505 ± 0.66	73	432	0.16626			
4	D0.5A1	494 ± 0.74	81	413	0.15955			
5	D0.5A0.5	517± 0.76	77	440	0.16951			
6	D0.5A4	466 ± 0.55	69	397	0.15272			
7	D0.5A16	513 ± 0.45	87	426	0.16713			

2.3. Mg-MOF-74@Mg₂Al-CO₃ LDHs

2.3.1. XRD of Mg-MOF-74

Fig. S14. Powder XRD pattern and the single-phase Rietveld refinement of Mg-MOF-74. Recorded experimental result is indicated in red; model built from TOPAS's calculation in green; difference between the real pattern and the refined model in grey. Mg-MOF-74 starting model is obtained from reference.⁶

Table S4	. Refinement	details for	the Mg-MOF	`74.
----------	--------------	-------------	------------	------

Atom	X	У	Z	Occupancy						
C(1)	0.40274	0.42351	0.73851	1.0						
C(2)	0.46950	0.47795	0.85329	1.0						
C(3)	0.49803	0.51164	0.75835	1.0						
C(4)	0.55037	0.53720	0.99410	1.0						
Mg(1)	0.65197	0.61578	0.63513	1.0						
O(1)	0.40445	0.43862	0.57932	1.0						
O(2)	0.36645	0.38301	0.78409	1.0						
O(3)	0.57538	0.60473	0.83944	1.0						
O(4)	0.66111	0.54389	0.79751	1.0						
O(5)	0.68955	0.53470	0.18493	1.25						
O(6)	0.74074	0.49972	0.63560	1.25						
O(7)	0.70875	0.39779	1.08924	1.25						
O(8)	0.56277	0.15467	0.49006	1.25						
a = 26.018692 Å; c=	a = 26.018692 Å; $c = 6.789166$ Å; Volume = 3980.320 Å ³									
Space group: R-3; K	$R_{wp} = 7.34058638\%$									

2.3.2. Retvield refinement details of Mg-MOF-74@Mg₂Al-CO₃ LDH

Phase 1: Mg-MOF-74									
Atom	X	y	Z	Occupancy					
C(1)	0.40113	0.41958	0.7468	1.0					
C(2)	0.45333	0.45781	0.8862	1.0					
C(3)	0.49620	0.51598	0.7891	1.0					
C(4)	0.54217	0.55212	0.9258	1.0					
Mg(1)	0.65048	0.61512	0.64538	1.0					
O(1)	0.40416	0.43959	0.5674	1.0					
O(2)	0.36180	0.37120	0.8109	1.0					
O(3)	0.58373	0.60612	0.8426	1.0					
O(4)	0.65528	0.54450	0.7926	1.0					
O(5)	0.69465	0.54725	0.1893	1.25					
O(6)	0.7468	0.50561	0.6644	1.25					
O(7)	0.7338	0.3535	1.0816	1.25					
O(8)	0.5540	0.41958	0.5088	1.25					
a = 26.003838 Å; c	= 6.779764 Å; Volun	$ne = 3974.05 \text{ Å}^3$							
Space group: <i>R-3</i> .									
	Pha	ase 2: Mg ₂ Al-CO ₃ L	DH						
Atom	X	У	Z	Occupancy					
Mg	0.00000	0.00000	0.00000	0.28465					
Al	0.00000	0.00000	0.00000	0.67856					
O(1)	0.00000	0.00000	0.38577	1.0					
O(2)	0.125	-0.125	0.50000	1.0					

0.66667

0.50000

1.0

Table S5. Two-phase refinement details for the Mg-MOF 74@Mg₂Al-CO₃ LDH.

a = 3.04067 Å; c= 22.985763 Å; Volume = 184.843 Å³ Space group: *R-3m:H*; R_{wp} = 7.34058638%

С

0.33333

2.3.3. FTIR data

Fig. S15. The FTIR spectra of the Mg-MOF-74 (black), Mg-MOF-74@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue). Features around 2000 cm⁻¹ are signals from sample stage.

2.3.4. TGA data

Fig. S16. The TGA plots of the Mg-MOF-74 (black), Mg-MOF-74@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue).

2.3.5. N_2 adsorption-desorption isotherms and BET specific surface area

Fig. S17. N_2 adsorption-desorption isotherm of the Mg-MOF-74 (black), MOF@Mg₂Al-CO₃ LDH (red) and Mg₂Al-CO₃ LDH (blue).

Table S6	. Summary	of the N ₂	BET	specific	surface	areas	and pore	volumes	of MOF	@Mg ₂ A	l-CO ₃
LDH with	varied dro	opping time	e and a	ageing ti	me.						

Samples	Sui	Micropore Volume (cm ³ /g)		
	BET	External	Micropore	
Mg-MOF-74	284 ± 0.52	81.34	202.65	0.036686
MOF@Mg ₂ Al-CO ₃ LDH	234 ± 2.11	234	0	0
Mg ₂ Al-CO ₃ LDH	134 ± 0.13	133.54	1.32	0.16626

3. Reference

- 1 A. A. Coelho, TOPAS-Academic (Version 6), Coelho Software, Brisbane, Australia, 2016.
- 2 F. Dogan, K. D. Hammond, G. A. Tompsett, H. Huo, W. C. Conner, S. M. Auerbach and C. P. Grey, *J. Am. Chem. Soc.*, 2009, **131**, 11062–11079.
- 3 W. Loewenstein and M. Lowensterin, Am. Mineral., 1954, **39**, 92–96.

- 4 C. A. Fyfe, Y. Feng, H. Grondey, G. T. Kokotailo and H. Gies, *Chem. Rev.*, 1991, **91**, 1525–1543.
- 5 P. J. Sideris, U. G. Nielsen, Z. Gan and C. P. Grey, *Science*, 2008, **321**, 113–117.
- 6 P. D. C. Dietzel, R. Blom and H. Fjellvåg, *Eur. J. Inorg. Chem.*, 2008, **23**, 3624–3632.