Intramolecular 1,5-Chalcogen Bond on the Conformational Preference of

Carbonyl Thiocarbamate Species

Pervaiz Ali Channar, Aamer Saeed, Fayaz Ali Larik, Ulrich Flörke, Lucas S. Rodríguez Pirani, Mauricio F. Erben

Electronic Supplementary Information

Table S1. Theoretical energies calculations (B3LYP/6-311++ G^{**}) for the compound presents in the isodesmic reactions routes.

Table S2. Experimental and theoretical (B3LYP/6-311++G**) vibration frequencies of O-methyl-N-4-fluorobenzoyl thiocarbamate.

Table S3. Experimental and theoretical $(B3LYP/6-311++G^{**})$ vibration frequencies of O-methyl-N-4-methylbenzoyl thiocarbamate.

Table 4. Crystal data and structure refinement result for compounds I and II.

Figure S1. Potential energy curves calculated (B3LYP/6-311++G**) for internal rotation of Omethyl-N-4-fluorobenzoyl thiocarbamate (compound I, black line) and O-methyl-N-4methylbenzoyl thiocarbamate (compound II, red line) as a function of the τ (OC-NC) (A) and τ (CN-CS) (B) torsion angle.

Figure S2. IR of O-methyl (4-fluorobenzoyl) carbamothioate

Figure S3. IR spectrum of O-methyl (4-methylbenzoyl) carbamothioate

Figure S4. Select region of Raman spectra of O-methyl-N-4-fluorobenzoyl thiocarbamate.

Figure S1. Potential energy curves calculated (B3LYP/6-311++G**) for internal rotation of Omethyl-N-4-fluorobenzoyl thiocarbamate (compound I, black line) and O-methyl-N-4methylbenzoyl thiocarbamate (compound II, red line) as a function of the τ (OC-NC) (A) and τ (CN-CS) (B) torsion angle.

Figure S2. IR of O-methyl (4-fluorobenzoyl) carbamothioate

Figure S3. IR spectrum of O-methyl (4-methylbenzoyl) carbamothioate

Figure S4. Select region of Raman spectra of O-methyl-N-4-fluorobenzoyl thiocarbamate.

for the compound presents in the isodesime reactions routes.				
	Compound I		Compound II	
	E°	H°	E°	H°
1	-975.832439	-975.819621	-915.857498	915.843632
2	-607.409236	-607.402057	-607.409236	-607.402057
3	-1051.065611	-1051.051658	-991.090410	-991.075360
3'	-1051.063735	-1051.049802	-991.088099	-991.073120
3′′	-1051.062456	-1051.048503	-991.087210	-991.072142
4	-532.171206	-532.165763	-532.171206	-532.165763
Δ	3.04	2.68	3.21	2.86
Δ'	4.22	3.83	4.66	4.27
$\Delta^{\prime\prime}$	5.03	4.65	5.21	4.88

Table S1. Theoretical energies calculations $(B3LYP/6-311++G^{**})$ for the compound presents in the isodesmic reactions routes.

			-
Experimental		Calculated	Assigment
IR	Raman		
3348 m		3623 (8)	V _{N-H}
		3209 (<1)	v _{c-H} (sym,Ph)
		3206 (<1)	v _{c-н} (sym,Ph)
		3197 (<1)	v _{c-н} (asym,Ph)
3030 w		3177 (1)	v _{c-н} (asym,Ph)
2955 m		3163 (3)	v _{с-н} (asym, CH ₃)
2922 s		3132 (3)	ν _{C-H} (asym, CH ₃)
2852 s		3054 (6)	ν _{C-H} (sym, CH ₃)
1680 s	1690 s	1774 (70)	V _{C=O}
1587 s	1603 m	1640 (31)	V _{CC}
		1628 (1)	V _{CC}
1539 m		1543 (54)	δ _{N-H}
1503 s		1529 (97)	δ _{N-H} + δ _{C-H} (Ph)
1479 s		1491 (4)	δ _{C-H} (CH ₃)
		1478 (4)	δ _{C-H} (CH ₃)
1433 (80)		1473 (67)	δ _{C-H} (CH ₃) + δ _{N-H}
1410 w		1436 (<1)	ν _{cc} + δ _{c-H} (Ph)
1366 vw		1341 (15)	$v_{C-C} + v_{N-C(S)}$
1325 s	1285 m	1327 (100)	ν _{N-C(S)} + δ _{C-H} (Ph)
1320 sh		1321 (47)	δ _{C-H} (Ph) + ν _{N-C(S)}
1261 m	1270 m	1265 (49)	$v_{C-C(O)} + v_{C=S}$
1248 m	1235 vw	1250 (21)	ν _{C-F} + δ _{C-H} (Ph)
1223 m	1209 m	1227 (71)	$\delta_{\text{N-H}} + v_{\text{O-C(S)}}$
1142 vs	1169 w	1179 (19)	δ _{C-H} (Ph)
1118 s	1146 m	1167 (51)	δ_{C-H} (CH ₃) + v _{C=S}
		1125 (5)	δ _{C-H} (Ph)
		1102 (4)	V _{O-CH3}
1015 s		1048 (28)	$v_{O-CH3} + v_{N-C(O)}$
966	1091 w	1028 (7)	δ _{ccc}
	1037 w	989 (<1)	δ _{C-H} (oop, Ph)
883 m	884 m	884 (11)	$δ_{OCN} + δ_{C-H}$ (oop, Ph)
		866 (10)	δ _{c-H} (oop, Ph)
836 s		832 (1)	δ _{c-H} (oop, Ph)
803 m		830 (<1)	δ _{c-н} (oop, Ph)
757 vs	754 m	771 (10)	$δ_{CC(O)}$ (oop) + $δ_{C-H}$ (oop, Ph)
727 vs		760 (1)	$\delta_{CC(O)}$ (oop) + v _{C=S}

Table S2. Experimental and theoretical $(B3LYP/6-311++G^{**})$ vibrationfrequenciesofO-methyl-N-4-fluorobenzoylthiocarbamate.

667 m		658 (8)	δ _{N-H} (oop)
		644 (1)	$\delta_{ccc} + \delta_{N-H}$ (oop) + $\delta_{NC(S)}$ (oop)
627 sh	645 w	631 (5)	$\delta_{NC(S)}$ (oop) + δ_{N-H} (oop)
616 w	635 w	616 (12)	$\delta_{CCC} + \delta_{OCS}$
599 vw	614 m	576 (2)	δ _{ocs}
581 w	570 w		
550 m	520 vw	516 (3)	δ _{ccc} (oop)
532 m		459 (<1)	τ _{сссс}
500 m		426 (<1)	δ _{ccc} (oop)
437 m		402 (<1)	δ _{FCC}
	359 vw	348 (<1)	τ _{ocnc}
	310 w	288 (<1)	т _{ссоснз}

methyloenzoyr	mocuroumate	•
Experimental	Calculated	Assignment
IR		
3188 m	3624 (7)	V _{N-H}
	3199 (<1)	v _{c-н} (sym,Ph)
	3178 (2)	v _{c-н} (sym,Ph)
	3162 (1)	v _{с-н} (asym,Ph)
	3161 (3)	v _{C-H} (asym,Ph)
	3162 (2)	v _{C-H} (asym, CH ₃)
3028 m	3131 (2)	v _{C-H} (asym, CH ₃)
	3107 (2)	v _{C-H} (asym, CH ₃ , Ph)
2951 sh	3077 (3)	v _{C-H} (asym, CH ₃ , Ph)
2924 m	3053 (5)	v _{с-н} (sym <i>,</i> CH ₃)
2852 m	3027 (5)	v _{C-H} (asym, CH ₃ , Ph)
1693 s	1772 (60)	V _{C=O}
1599 s	1649 (12)	V _{CC}
	1607 (1)	V _{CC}
1555 m	1544 (35)	δ _{N-H} + δ _{C-H} (Ph)
1530 vs	1531 (84)	δ _{N-H} + δ _{C-H} (Ph)
	1494 (1)	δ _{C-H} (CH ₃ , Ph)
	1492 (3)	δ _{C-H} (CH ₃)
	1485 (1)	δ _{C-H} (CH ₃ , Ph)
	1477 (1)	δ _{C-H} (CH ₃)
1479 w	1473 (54)	δ _{C-H} (CH ₃) + δ _{N-H}
1455 w	1435 (<1)	δ _{C-H} (Ph) + δ _{C-H} (CH ₃ , Ph)
1408 w	1414 (<1)	δ _{C-H} (CH ₃ , Ph)
1379 w	1341 (11)	δ _{C-H} (Ph)
1335 vs	1337 (32)	$v_{C-C} + v_{N-C(S)}$
1314 m	1326 (100)	$v_{N-C(S)} + v_{C-C}$
1252 m	1267 (33)	$v_{C-C(O)} + v_{C=S}$
1226 m	1236 (17)	$v_{C-CH3} + \delta_{N-H}$
	1224 (28)	$v_{C-C} + v_{C-CH3} + v_{C-C(O)}$
	1209 (18)	δ _{C-H} (Ph)
1170 vs	1167 (31)	δ _{C-H} (CH ₃) + δ _{N-H}
1117 w	1143 (10)	δ _{C-H} (Ph)
	1102 (2)	V _{O-CH3}
	1062 (1)	δ _{C-H} (CH ₃ , Ph)
1073 w	1049 (23)	$v_{O-CH3} + v_{N-C(O)}$
1013 w	1034 (10)	δ _{ccc}
964 m	997 (<1)	δ _{C-H} (oop, Ph)
938 vw	971 (<1)	δ _{C-H} (oop, Ph)

Table S3. Experimental and theoretical (B3LYP/6-311++G**) vibration frequencies of O-methyl-N-4-methylbenzoyl thiocarbamate.

915 vw		
841 m	882 (6)	$δ_{OCN} + δ_{C-H}$ (oop, Ph)
	860 (2)	δ _{C-H} (oop, Ph)
824 m	843 (2)	δ _{C-H} (oop, Ph)
756 vs	759 (10)	δ _{CC(O)} (oop) + δ _{C-H} (oop, Ph)
726 vs	705 (3)	$\delta_{CC(O)}$ (oop) + $v_{C=S}$
687 m	661 (5)	δ _{N-H} (oop)
619 w	635 (3)	$\delta_{ccc} + \delta_{N-H} (oop) + \delta_{NC(S)} (oop)$
581 vw	617 (3)	$\delta_{ccc} + \delta_{COC}$
550 w	577 (3)	δ _{COCH3}
504 m	499 (1)	$δ_{CCC}$ (oop) + $δ_{C-H}$ (oop, Ph)
436 w	444 (1)	τ _{сссс}

		-	
	Compound I	Compound II	
Crystal data			
Chemical formula	C ₉ H ₈ FNO ₂ S	$C_{10}H_{11}NO_2S$	
Formula weight	213.2	209.3	
Crystal system	Monoclinic	monoclinic	
space group	$P 2_1/c$	$P 2_1/c$	
a (Å)	11.7032 (18)	11.7767(16)	
b (Å)	8.7287(13)	9.1218(13)	
c (Å)	9.8686(15)	9.7623(14)	
β (°)	111.415(3)	106.287(3)	
Volume (Å ³)	938.5(2)	1006.6(2)	
Ζ	4	4	
Density (mg/m ³)	1.509	1.381	
μ (mm ⁻¹)	0.331	0.293	
F(000)	440	400	
Crystal size (mm ³)	0.32 x 0.22 x 0.15	0.45 x 0.22 x 0.18	
Data collection			
Diffractometer	Bruker SMART APEX CCD	Bruker SMART APEX CCD	
Radiationtype	Μο Κ _α	Μο Κ _α	
Wavelength (Å)	0.71073	0.71073	
Temperature (K)	130 (2)	130 (2)	
Reflection collection	8674	9276	
Θ range for data collection (°)	1.9 to 27.9	1.8 to 27.9	
Independent reflections	$2240 (R_{int} = 0.022)$	$2400 (R_{int} = 0.022)$	
Refinement			
Refinement method	full-matrix least-squares F ²	full-matrix least-squares F ²	
$R[F^2 > 2_(F^2)], wR(F^2), S$	0.033, 0.090, 1.04 0.034, 0.098, 1.02		
$\Delta \rho_{\text{max}}, \Delta \rho_{\text{min}}$ (e. Å ⁻³)	0.38, -0.21	0.36, -0.19	

 Table 4. Crystal data and structure refinement result for compounds I and II.

Table of Contents

