First fabrication of Ni_3N/Ni_4N heterojunction to boost the H_2 evolution efficiency of $Zn_{0.5}Cd_{0.5}S$

Zhanbin Jin,^a Tingting Wei,^a Fengyan Li, *^a Qiu Zhang,^a and Lin Xu*^a

Key Laboratory of Polyoxometalate Science of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. cChina

Material characterizations

The composition and phase composition of the samples were studied by powder Xray diffraction (D \leq Max200PC, Japanese; Cu K α = 1.5404). The scanning range of 2 theta is 10 $^{\circ}$ 80 $^{\circ}$, and the scanning rate is 10 $^{\circ}$ min⁻¹. The microstructure, size and EDX-mapping of the samples were studied by scanning electron microscope (Hitachi SU-8000 FE-SEM). The transmission electron microscope (TEM) was carried out on JEM-2100-F microscope with acceleration voltage of 200 kV. The sample powder was uniformly dispersed in ethanol by ultrasonic treatment and the very thin suspension droplets were placed on the copper plate and then dry in the oven. Using monochromatic Al K a radiation as excitation source, X-ray photoelectron spectroscopy (XPS), has been carried out on USWHA 150 photoelectron spectrometer. The binding energy of XPS is related to the C1 peak at 284.8 eV of uncertain carbon on the surface. The specific surface area of Brunauer Emmett Teller (BET) of the product powder was determined by using the nitrogen adsorption/desorption isotherm obtained by a Micromerics ASAP 2020 nitrogen adsorption/desorption apparatus. Photoluminescence (PL) was measured on F-7000 fluorescence spectrophotometer. The UV-vis diffuse reflection spectrum (DRS) of the sample was detected by varian cary 700 spectrophotometer from 200-800 nm and BaSO₄ was used as the reflectance standard. All the photocurrent measurements such as electrochemical impedance spectra (EIS) and Transient photocurren were measured in 0.5 M Na₂SO₄ solution electrolyte on an Ivium workstation (Ivium Stat.h, Ivium Holland, Inc.).

Fig. S1. The XRD of ZCS, Ni_xN and 20% Ni_xN/ZCS samples.

Fig. S2. The XRD of Fe₃N, NixN and Co₃N samples

Fig. S3. The XRD of Ni_3N sample.

4-94-9664		kkk		
Elements	Weight%	Atom%	Intensity	Error %
NK	0.05	0.21	0.03	99.99
sк	30.57	54.51	325.18	5.69
CdL	42.56	21.65	187.17	6.35
NiK	1.64	1.60	5.95	58.71
ZnK	25.18	22.03	57.07	11.51

Fig. S4. EDX data of sample $2\% Ni_x N/ZCS$.

Fig. S5. SEM-Mapping images for nitrogen, nickel, sulphur, cadmium, zinc.

Fig. S6. Nitrogen adsorption-desorption isotherms.

Fig. S7. Rate of H_2 evolution of 2% Co₃N/ZCS, 2% Ni_xN/ZCS, 2% Fe₃N/ZCS and

2%Ni₃N/ZCS

Samples

Fig. S8 Rate of H₂ evolution over the 2% Ni_xN/ZCS sample with different concentrations of sacrificial reagents: a: 0.35 M $Na_2S/0.25$ M Na_2SO_3 , b: 0.7 M $Na_2S/0.5$ M Na_2SO_3 , c: 1.05 M $Na_2S/0.75$ M Na_2SO_3 , and d: 1.4 M $Na_2S/1.0$ M Na_2SO_3

Fig. S9. Photoluminescence spectra of ZCS and 2% $\rm Ni_xN/ZCS$ and the excitation wavelength was 410 nm.

			Weight(mg)/			
Cocatalys	Light	Light	Solution (mL),	Activity	A.Q.E.	Ref.
ts	harvesting	source	sacrificial agent	$(mmol g^{-1} h^{-1})$	(%)	
		300 W Xe				This
Ni _x N	Zn _{0.5} Cd _{0.5} S	lamp with a	1/200, 0.25 M Na ₂ SO ₃	241.3	43.8	work
		420 nm cut-	and $0.35 \text{ M} \text{ Na}_2\text{S}$			
		off filter				
		300 W Xe				This
Fe ₃ N	Zn _{0.5} Cd _{0.5} S	lamp with a	1/200, 0.25 M Na ₂ SO ₃	138.4		work
		420 nm cut-	and $0.35 \text{ M} \text{ Na}_2\text{S}$			
		off filter				
		300 W Xe				
Co ₃ N	Zn _{0.5} Cd _{0.5} S	lamp with a	1/200, 0.25 M Na ₂ SO ₃	160.7	30.2	1
		420 nm cut-	and 0.35 M Na ₂ S			
		off filter				
NiCoP	TiO ₂	300 W Xe	20/80, 20% vol	1.54		2
		lamp	methanol			

Table S1 Photocatalytic H ₂ evolution activity	y over different ZCS	photocataly	/sts
--	----------------------	-------------	------

Ni ₂ P	Zn _{0.5} Cd _{0.5} S	300 W Xe lamp with a 420 nm cut- off filter	50/100, 0.25 M Na ₂ SO ₃ and 0.35 M Na ₂ S	41.26		3
NiO/Ni ₂ P	g-C ₃ N ₄	300 W Xe lamp with a 420 nm cut- off filter	10/20, 10% triethanolamine	0.504		4
Ni ₃ N	g-C ₃ N ₄	300 W Xe lamp with a 420 nm cut- off filter	5/250, 20 vol% triethanolamine	0.305	0.45	5
NiS _x	Zn _{0.8} Cd _{0.2} S/rG O	300 W Xe lamp with a 420 nm cut- off filter	50/50, 10% lactic acid	7.84	20.88	6
Ni ₂ P	CNTs	350 W Xe lamp	30/100, 10 vol% triethanolamine	19.25	5.8	7
Ni ₂ P	MIL-125-NH ₂	300 W Xe lamp with a 420 nm cut- off filter	17/25, 20 vol% triethanolamine	3.878	27	8
Ni ₃ N	g-C ₃ N ₄	300 W Xe lamp with a 420 nm cut- off filter	50/100, 10 vol% triethanolamine	0.169	0.11	9

		300 W Xe				
		lamp with a				
Ni ₂ P	CdS	420 nm cut-	10/75, 10% lactic acid	17.95	4.2	10
		off filter				

- 1. Z. B. Jin, T. T. Wei, L. X. Li, F. Y. Li, R. Tao and L. Xu, *Dalton. Trans.*, 2019, **48**, 2676-2682.
- 2. R. Song, W. Zhou, B. Luo and D. W. Jing, *Appl. Surf. Sci.* 2017, **416**, 957–964.
- 3. T. P. Yu , Y. Y Si, Z. H. Lv, K. H. Wang, Q. Zhang, X. Liu, G. X. Wang, G. W. Xie and L. H. Jiang, *Int. J. Hydrogen Energy*, 2019, **44**, 31832-31840.
- 4. J. W. Shi, Y. J. Zou, L. H. Cheng, D. D. Ma, D. K. Sun, S. M. Mao, L. W. Sun, C. He and Z. Y. Wang, *Chem. Eng. J.*, 2019, **378**, 122161.
- 5. J. H Ge, Y. J. Liu, D. C. Jiang, L. Zhang and P. W. Du, *Chinese J. Catal.*, 2019, **40**, 160–167.
- 6. C. Xue, H. Li, H. An, B. L. Yang, J. J. Wei, and G. D. Yang, ACS Catal., 2018, 8, 1532–1545.
- 7. Z. X. Lin, Y. Zhao, J. H. Luo, S. J. Jiang, C. Z. Sun and S. Q. Song, *Adv. Funct. Mater.*, 2019, **1908797**.
- S. Kampouri, T. N. Nguyen, C. P. Ireland, B. Valizadeh, F. M. Ebrahim, G. Capano, D. Ongari, A. Mace, N. Guijarro, K. Sivula, A. Sienkiewicz, L. Forro, B. Smit and K. C. Stylianou, *J. Mater. Chem. A*, 2018, 6, 2476-2481.
- L. Chen, H. J. Huang, Y. H. Zheng, W. H. Sun, Y. Zhao, P. S. Francis and X. X. Wang, *Dalton Trans.*, 2018, 47,12188-12196.
- 10. C. Liu, M. H. Xiong, B. Chai, J. T. Yan, G. Z. Fan and G. S. Song, Catal. Sci. Technol., 2019, 9, 6929-6937.