LSPR mediated improved upconversion emission on randomly distributed gold

nanoparticles arrays

S. P. Tiwari^{a, b*}, A. Kumar^a, K. Kumar^a, M. R. Singh^c, G. P. Bharti^d, Alika Khare^d, H. C. Swart^b,

S. K. Verma^{e,f}

^aOptical Materials and Bioimaging Research Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad-826004, Jharkhand, India

^bDepartment of Physics, University of Free State, Bloemfontien-9300, South Africa

^cNano Photonics Laboratory, Department of Applied Physics, Indian Institute of Technology (Indian School of Mines) Dhanbad-826004, Jharkhand (India)

^dDepartment of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India

eSchool of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, P. R. China

^fShaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin 719000, China

*Correspondence author:

E-mail addresses: sptiwari.ism@gmail.com (S.P. Tiwari)

Fig. S1. Surface morphology of Gd₂O₃: Er³⁺/Yb³⁺ upconversion nanoparticles

The FESEM analysis of Gd_2O_3 : Er^{3+}/Yb^{3+} phosphors were carried out to investigate the surface morphology of annealed (800 °C) sample. The spherical shape of the particles was observed well, consequently, the particle size is found to be 80 to 100 nm. Due to the evenness distribution of particles, the deposition of Gd_2O_3 : Er^{3+}/Yb^{3+} upconversion nanoparticles into form of film were easily carried out. The lucid shape and well distinguished size of phosphors was shown in Fig. S1.