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1. Dataset compilation 

A set of natural allosteric modulators was constructed from the chemical databases PubChem, SciFinder and PubMed.  

Abstracts and titles of journal articles were searched for the keywords: “natural product” and “allosteric modulator” or 

“allosteric inhibitor” or “allosteric activator” or “non-competitive” or “uncompetitive” (Table S1).  All unique 

publications from 2008 to 2018, were considered, which totaled 1,212 compounds. After manual curation, this set was 

constituted of 221 single natural allosteric compounds; some compounds were modulators of more than one target, 

constituting a total of 47 repeats. We also considered a set of 78,810 allosteric modulators (natural, synthetic and 

peptides), 461 allosteric experimental drugs and 19 allosteric approved drugs obtained from the AlloStericDatabase 

(ASD) (mdl.shsmu.edu.cn/ASD/).1 Besides, 1,853 non-peptide inhibitors (iPPI) across 18 families of protein-protein 

interactions from the iPPI-Database (ippidb.cdithem.fr/)2 and 11,452 unique compounds from the Drug Bank Database 

(drugbank.ca/)3 including 2,255 approved small molecule drugs were contemplated. The dataset was completed with 

208,240 compounds from the Natural Products Database UNPD (pkuxxj.pku.edu.cn/UNPD/),4 therefore forming our final 

dataset of 301,056 compounds. 

Table S1. Keywords used to retrieve the allosteric set and amount of papers and compounds found for each keyword.

Keywords Pubchem Scifinder

Papers 7 77‘allosteric modulator’ AND 
“natural product”

Compounds 12 97

Papers 15 97‘allosteric inhbitor’ AND “natural 
product”

Compounds 139 40

Papers 3 20‘allosteric activator’ AND “natural 
product”

Compounds 18 41

Papers 52 226‘non-competitive’ AND “natural 
product”

Compounds 318 554

Papers 19 74‘uncompetitive’ AND “natural 
product”

Compounds 69 200

Total compounds 477 932

Single compounds after manual curation 221

1 Q. Shen, G. Wang, S. Li, X. Liu, S. Lu, Z. Chen, K. Song, J. Yan, L. Geng, Z. Huang, W. Huang, G. Chen and J. Zhang, Nucleic 
Acids Res., 2016, 44, D527–D535.
2 C. M. Labbé, M. A. Kuenemann, B. Zarzycka, G. Vriend, G. A. F. Nicolaes, D. Lagorce, M. A. Miteva, B. O. Villoutreix and O. 
Sperandio, Nucleic Acids Res., 2016, 44, D542–D547.
3 D. S. Wishart, Y. D. Feunang, A. C. Guo, E. J. Lo, A. Marcu, J. R. Grant, T. Sajed, D. Johnson, C. Li, Z. Sayeeda, N. Assempour, 
I. Iynkkaran, Y. Liu, A. MacIejewski, N. Gale, A. Wilson, L. Chin, R. Cummings, Di. Le, A. Pon, C. Knox and M. Wilson, Nucleic 
Acids Res., 2018, 46, D1074–D1082.
4 M. Wang and N. Bandeira, J. Proteome Res., 2013, 12, 3944–3951.
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2. Chemical Space 

2.1. Molecular Descriptors Calculation

From the SMILES of the 301,057 compounds, 195 topological, 47 geometrical, and 17 constitutional descriptors were 

calculated using the open-source Java framework Chemistry Development Kit (CDK),5 through the “rcdk” R package.6 

A description of the molecular descriptors calculated is found in Table S2. 

Table S2. Molecular descriptors considered in the exploration of the chemical space obtained from the CDK Library

 Descriptor Type Description

1 nSmallRings Topological Total number of small rings (of size 3 through 9) 

2 nAromRings Topological Total number of small aromatic rings 

3 nRingBlocks Topological Total number of distinct ring blocks 

4 nAromBlocks Topological Total number of aromatically connected components 

5-11 nrings3, nRings4,nRings5, nRings6, nRings7, 
nRings8, nRings9

Topological Individual breakdown of 3,4,5,6,7,8, or 9 membered rings 

12 tpsaEfficiency Topological Polar surface area expressed as a ratio to molecular size.

13 Zagreb Topological Sum of the squares of atom degree over all heavy atoms

14-15 WienerNumbers (WPATH,WPOL) Topological Wiener path number and Wiener polarity number. Sum of the lengths of the 
shortest paths between all pairs of vertices in the chemical graph representing the 
non-hydrogen atoms in the molecule.

16-20 WeightedPath (WTPT.1, WTPT.2, WTPT.3, 
WTPT.4, WTPT.5)

Topological The weighted path (molecular ID) descriptors described by Randic.7 They 
characterize molecular branching.  

21 VadjMat Topological Vertex adjacency information (magnitude): 1 + log2(m), where m is the number 
of heavy-heavy bonds.

22 VABC Topological Volume of a molecule 

23 TopoPSA Topological Calculation of topological polar surface area based on fragment contributions

24-25 TopoShape,geomShape Topological/Geometrica
l

The topological and geometric shape indices described Petitjean and Bath et al, 
respectively.8,9 Both measure the anisotropy in a molecule. 

6 PetitjeanNumber Topological Petitjean Number of a molecule. According to the Petitjean definition,8 the 
eccentricity of a vertex corresponds to the distance from that vertex to the most 
remote vertex in the graph.

27-45 MDEC.11, MDEC.12, MDEC.13, MDEC.14, 
MDEC.22, MDEC.23, MDEC.24, MDEC.33, 
MDEC.34, MDEC.44, MDEO.11, MDEO.12, 
MDEO.22, MDEN.11, MDEN.12, MDEN.13, 
MDEN.22, MDEN.23, MDEN.33

Topological Evaluate molecular distance edge descriptors for C, N and O 

46-124 KierHallSmarts (khs.sLi, khs.ssBe, khs.ssssBe, 
khs.ssBH, khs.sssB, khs.ssssB, khs.sCH3,  
khs.dCH2, khs.ssCH2, khs.tCH, khs.dsCH, 
khs.aaCH, khs.sssCH, khs.ddC, khs.tsC, 
khs.dssC, khs.aasC, khs.aaaC, khs.ssssC,  
khs.sNH3, khs.sNH2, khs.ssNH2, khs.dNH, 
khs.ssNH, khs.aaNH, khs.tN, khs.sssNH, 
khs.dsN, khs.aaN, khs.sssN, khs.ddsN, khs.aasN, 
khs.ssssN, khs.sOH, khs.dO, khs.ssO, khs.aaO, 
khs.sF, khs.sSiH3, khs.ssSiH, khs.ssSiH2, 
khs.ssssSi, khs.sPH2, khs.ssssSi, khs.sPH2, 
khs.ssPH, khs.sssP,  khs.dsssP, khs.sssssP. 
khs.sSH, khs.dS, khs.ssS, khs.aaS, khs.dssS,  

Topological Counts the number of occurrences of the E-state fragments10

5 E. L. Willighagen, J.W. Mayfield, J. Alvarsson, A. Berg, L. Carlsson, N. Jeliazkova, S. Kuhn T. Pluskal M. Rojas-Chertó O. 
Spjuth, G. Torrance, C. Evelo, R Guha, C. Steinbeck, Journal of Cheminformatics, 2017, 9(1), 33.
6 R. Guha, Journal of Statistical Software, 2007, 6,18.
7 M. Randić, SC., Basak Journal of Chemical Information and Computer Sciences, 1999, 39(2), 261-266.
8 M. Petitjean, Journal of Chemical Information and Computer Sciences, 1992, 32(4), 331-337.
9 PA. Bath, AR. Poirrette, P. Willett, FH. Allen, Journal of Chemical Information and Computer Sciences, 1995, 35(4), 714-716.
10 K. Roy, I. Mitra, Current Computer-aided Drug Design, 2012, 8(2), 135-158.



khs.ddssS, khs.sCl, khs.sGeH3, khs.ssGeH2, 
khs.sssGeH, khs.ssssGe, khs.aAsH2, khs.ssAsH, 
khs.sssAs, khs.sssdAs, khs.sssssAs, khs.sSeH, 
khs.dSe, khs.ssSe, khs.aaSe, khs.dssSe, 
khs.ddssSe, khs.sBr, khs.sSnH3, khs.ssSnH2, 
khs.sssSnH, khs.ssssSn, khs.sI, khs.PbH3, 
khs.PbH2, khs.sssPbH, khs.ssssPb).

125-127 Kier1, Kier2, Kier3 Topological Calculation of Kier and Hall kappa molecular shape indices. 

128 HybRatio Topological Fraction of sp3 carbons to sp2 carbons.

129 fragC Topological Fragment complexity

130 FMF Topological Ratio of heavy atoms in the framework to the total number of heavy atoms in the 
molecule. By definition, acyclic molecules which have no frameworks, will have 
a value of 0.

131 ECCEN Topological Eccentric connectivity index that combines distance and adjacency information.11

132-146 ChiPath (SP.0, SP.1, SP.2, SP.3, SP.4, SP.5, 
SP.6, SP.7, VP.1, VP.2, VP.3, VP.4, VP.5, VP.6, 
VP.7)

Topological Evaluates the Kier & Hall Chi path indices of orders 0,1,2,3,4,5,6 and 7 

147-153 ChiPathCluster (VP.0, SPC.4, SPC.5, SPC.6, 
VPC.4,  VPC.5, VPC.6)

Topological Evaluates the Kier & Hall Chi path cluster indices of orders 4,5 and 6 

154-161 ChiCluster (SC.3, SC.4, SC.5, SC.6, VC.3, VC.4, 
VC.5,  VC.6)

Topological Evaluates the Kier & Hall Chi cluster indices of orders 3,4,5 and 6

162-171 ChiChain (SCH.3, SCH.4, SCH.5, SCH.6, 
SCH.7, VCH.3, VCH.4, VCH.5, VCH.6, VCH.7)

Topological Evaluates the Kier & Hall Chi chain indices of orders 3,4,5,6 and 7. 

172-180 CarbonTypes( C1SP1, C2SP1, C1SP2, C2SP2, 
C3SP2, C1SP3, C2SP3, C3SP3, C4SP3)

Topological Characterizes the carbon connectivity in terms of hybridization. (Ex. C3SP2-
Doubly bound carbon bound to three other carbons)

181-185 AutocorrelationPolarizability (ATSp1, ATSp2, 
ATSp2, ATSp4, ATSp5)

Topological Moreau-Broto autocorrelation using polarizability 

186-190 AutocorrelationMass (ATSm1, ATSm2, ATSm3, 
ATSm4, ATSm5)

Topological Moreau-Broto autocorrelation descriptors using atomic weight.

191-195 AutocorrelationCharge (ATSc1, ATSc2, ATSc3, 
ATSc4, ATSc5)

Topological The Moreau-Broto autocorrelation descriptors using partial charges 

196-202 MomentOfInertia (MOMI.X, MOMI.Y, 
MOMI.Z, MOMI.XY, MOMI.XZ, MOMI.YZ, 
MOMI.R)

Geometrical Principal moments of inertia and ratios of the principal moments. Also calculates 
the radius of gyration. 

203-204 LengthOverBreadth (LOBMAX, LOBMIN) Geometrical Calculates the ratio of length to breadth. 

205-213 GravitationalIndex (GRAV.1, GRAV.2, 
GRAV.3, GRAVH.1, GRAVH.2, GRAVH.3. 
GRAV.4, GRAV.5, GRAV.6)

Geometrical Mass distribution of the molecule. 

214-242 CPSA (PPSA.1, PPSA.2, PPSA.3, PNSA.1, 
PNSA.2, PNSA.3, DPSA.1, DPSA.2, DPSA.3, 
FPSA.1, FPSA.2, FPSA.3, FNSA.1, FNSA.2, 
FNSA.3, WPSA.1, WPSA.2, WPSA.3, WNSA.1, 
WNSA.2, WNSA.3, RPCG, RNCG, RPC5, 
RNCS, THSA, TPSA, RHSA,  RPSA)

Geometrical A variety of descriptors combining surface area and partial charge information. 
Capture information about the features of molecules responsible for polar 
intermolecular interactions.12

243 XLogP Constitutional Prediction of logP based on the atom-type method called XLogP.

244 Weight (MW) Constitutional Weight of atoms of a certain element type. If no element is specified, the returned 
value is the Molecular Weight 

245 Lipinski Failures Constitutional Number failures of the Lipinski's Rule of Five.

246 RotatableBondsCount (nRotB) Constitutional Number of nonrotatable bonds on a molecule. 

247 MLogP Constitutional LogP based on a the Mannhold equation using the number of carbons and hetero 
atoms.

248 LongestAliphaticChain  (nAtomLAC) Constitutional Number of atoms in the longest aliphatic chain. 

249 LargestPiSystem (nAtomP) Constitutional Number of atoms in the largest pi system. 

250 LargestChain (nAtomLC) Constitutional Number of atoms in the largest chain 

251 BondCount (nB) Constitutional Number of bonds of a certain bond order. 

252 nBase Constitutional Returns the number of basic groups.

11 V. Sharma, R. Goswami, AK., Madan Journal of Chemical Information and Computer Sciences,1997, 37(2), 273-282.
12 DT. Stanton, S. Dimitrov, V. Grancharov, OG. Mekenyan SAR and QSAR in Environmental Research, 2002, 13(2), 341-351.



253 AtomCount (nAtom) Constitutional Number of atoms of a certain element type. 

254 AromaticBondsCount (nAromBond) Constitutional Number of aromatic bonds of a molecule.

255 AromaticAtomsCount (naAromAtom) Constitutional  Number of aromatic atoms of a molecule. 

256-258 AlogP, Alogp2, AMR Constitutional Atom additive logP and molar refractivity values as described by Ghose and 
Crippen.13

259 nAcid Constitutional Returns the number of basic groups.

A Principal Component Analysis (PCA) was performed to reduce the dimensionality of the 259-dimensional dataset and 

elucidate the chemical space covered by the compounds, while maintaining as much variability as possible. This is 

equivalent to solving an eigenvalue/eigenvector problem, since the eigenvalues are the variances of the linear 

combinations defined by the corresponding eigenvector.14 In this way we found the PCs from the original (centered) 

dataset descriptors, that successively maximize variance and that are uncorrelated with each other.15 As PCA may be 

dominated by variables with large units of measurement, we standardized the molecular descriptors by centered and 

divided each value xij by the standard deviation sj of the n observations of each descriptor j, 

                                                                                  (1)
𝑌𝑖𝑗=

𝑥𝑖𝑗 ‒ �̀�𝑗
𝑠𝑗

Thus, the initial data matrix was replaced with the standardized matrix Yij. Thus, since the covariance matrix of a 

standardized dataset is plainly a correlation matrix of the original dataset, a PCA on the standardized data is also known 

as a correlation matrix PCA. The covariance matrix can be defined as:

                                                            (2)
𝑆=

1
𝑁∑(𝑥𝑛 ‒ �̀�)(𝑥𝑛 ‒ �̀�)𝑇

where each compound xn is projected onto a scalar value, x-bar is the sample set mean given by:

                                                                            (3)
�̀�=

1
𝑁∑𝑥𝑛

In this way, the most similar molecular descriptors (represented by vectors) are grouped in each quadrant of a 2D (PC1, 

PC2) plane, and hence the most related compounds. PC1 represents the direction in feature space along which projections 

have the largest variance and PC2 is the direction which maximizes variance among all directions orthogonal to the first. 

Table S3 quantitatively represents the distribution of the different datasets in the chemical space created from the PCA. 

Accordingly, the cosine of the angle between two vectors is the coefficient of correlation between those molecular 

descriptors. Similarly, the cosine of the angle between any vector and the axis representing a PC is the coefficient of 

correlation between these features. Variables that do not correlate with any PC or correlate with the last dimensions are 

variables with low contribution. The corresponding variable map is illustrated in Figure S2, and statistical data regarding 

dataset distribution throughout the 4 quadrants is shown in Table S3.

13 AK. Ghose, A. Pritchett, GM. Crippen, J Comput Chem, 1988, 9(1),80–90.
14 IT. Jolliffe, J. Cadima, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 
2016, 374(2065).
15 J.L, Reymond, M. Awale, ACS Chemical Neuroscience, 2012,3(9), 649-657.



Table S3. Quantitative distribution of the different datasets in the chemical space. 

Quadrant UNPD-ISDB
ASD (non-

drugs)
iPPIs (non-
peptides)

DrugBank 
(experimental)

DrugBank 
(approved)

ASD (exp. 
drugs)

ASD (app. 
drugs)

alloNPs Total

Q1 78398 6674 92 3947 1068 28 2 40 90249

Q2 33810 58726 998 4081 826 414 12 106 98973

Q3 69406 513 16 433 173 6 2 40 70589

Q4 26626 12897 748 736 188 13 3 35 41246

TOTAL 208240 78810 1854 9197 2255 461 19 221 301057



Figure S1. Principal component analysis (PCA) based on molecular descriptors of all datasets used. A) variable map, circle of correlation of the most 
important molecular descriptors; B) variable map, circle of correlation of all molecular descriptors. The PC1 and PC2 axes that separate the four 
quadrants (Q1 to Q4) are emphasized by grey dotted lines.



2.2. Additional chemical space plot highlighting the ASD and iPPI-DB datasets

Figure S2. Principal component analysis (PCA) based on molecular descriptors of all datasets showing the chemical space plots UNPD_ISDB (grey 
dots), ASD (non-drugs, mauve dots), iPPI-DB (yellow dots) and reviewed alloNPs (black dots). The PC1 and PC2 axes that separate the four quadrants 
(Q1 to Q4) are emphasized by white dotted lines. 

2.3. FDA-approved drugs in the chemical space

Figure S3. Localization of selected FDA-approved drugs (among the 200 top selling small molecule drugs in 2018)16 in the chemical space. Principal 
component analysis (PCA) based on molecular descriptors of all datasets showing the chemical space plots UNPD_ISDB (grey dots), FDA-approved 
drugs (blue dots), and reviewed alloNPs (black dots). The PC1 and PC2 axes that separate the four quadrants (Q1 to Q4) are emphasized by white dotted 
lines. Colours of drug names indicate therapeutic indication: oncology (violet), respiratory disorders (blue), neurological disorders (green), anti-
inflammatory (bright red), gastrointestinal disorders (prune), diabetes (pink), sexual health (dark blue), cardiovascular (dark red), and infectious diseases 
(cyan).

16 N. A. McGrath, M. Brichacek and J. T. Njardarson, J. Chem. Educ., 2010, 87, 1348–1349. Latest data retrieved from the 
Njardarson group website. https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster (accessed on January 16th 2020).

https://njardarson.lab.arizona.edu/content/top-pharmaceuticals-poster


3. Groups of allosteric mechanisms found for natural allosteric modulators

Several models have been reported to mathematically explain allostery, the Monod-Wyman-Changeux (MWC 
model)17 two-state model considers pre-existent conformers of proteins that are selected by ligands; the Koshland, 
Nemethy and Filmer (KNF model)18 induced-fit model takes into account protein plasticity and changes promoted by 
ligands; and the Cuendet, Weinstein, and LeVine19 ensemble model defines conformational landscapes that explain 
allostery in a free-energy basis. In recent years, when more allosteric mechanisms have been elucidated in a structural 
and dynamics base, it has been a trend to merge or to include more variables into these models. 

Allostery is easier explained for enzymes, in which there is a well-defined catalytic site, where a substrate binds. 
The catalytic site generally exists in more than one local conformation: one active conformation capable of performing 
substrate catalysis, and at least a second conformation that is catalytically inactive. Substrate (“S” in Figure S4) binding 
to the enzyme traps or stabilizes the active conformation, allowing catalysis of the substrate. Competitive inhibitors (“I”) 
also bind to the same site as the substrate, avoiding substrate binding and, therefore, catalysis, even if the enzyme’s active 
conformation is achieved. Allosteric modulators (“*”) can act following two major alterations in enzymes: i) local or ii) 
global. In both cases, the allosteric modulator binds to a secondary site away from the catalytic site – the allosteric site 
(“A”) of binding. The allosteric site can occur a dozen of Angstroms away from the catalytic site. 

By analysing the structural and dynamics bases of natural allosteric modulators reported over the last decade we 
could classify them into three major groups: type “i” (local alterations), type “ii” (global alterations) and “PPI” type. 
Receptors, as GPCRs, use a combination of the three phenomena. In type “i” allosteric modulation, ligand binding 
provokes local alterations at the catalytic site in a way that abolishes enzyme activity. The local alterations commonly 
involve the incorrect stabilization of protein loops or residues involved in enzyme catalysis. This is observed for example 
for PTP1B20 and IsPD21 enzymes.

On the other hand, type “ii” allosteric modulation involves global changes in protein structure and dynamics, the 
latter being the major component. A combination of “in solution” studies, crystallographic snapshots22,23 of enzyme 

17 J. Monod, J. Wyman and J. P. Changeux, J. Mol. Biol., 1965, 12, 88–118.
18 D. E. Koshland, J. G. Nemethy and D. Filmer, Biochemistry, 1966, 5, 365–385.
19 M. A. Cuendet, H. Weinstein and M. V. LeVine, J. Chem. Theory Comput., 2016, 12, 5758–5767.
20 N. Krishnan, D. Koveal, D. H. Miller, B. Xue, S. D. Akshinthala, J. Kragelj, M. R. Jensen, C. M. Gauss, R. Page, M. Blackledge, 
S. K. Muthuswamy, W. Peti and N. K. Tonks, Nat. Chem. Biol., 2014, 10, 558–566.
21 A. Kunfermann, M. Witschel, B. Illarionov, R. Martin, M. Rottmann, H. W. Höffken, M. Seet, W. Eisenreich, H. J. Knölker, M. 
Fischer, A. Bacher, M. Groll and F. Diederich, Angew. Chemie - Int. Ed., 2014, 53, 2235–2239.
22 M. Arciniega, P. Beck, O. F. Lange, M. Groll and R. Huber, Proc. Natl. Acad. Sci., 2014, 111, 9479–9484.
23 H. P. Morgan, I. W. McNae, M. W. Nowicki, V. Hannaert, P. A. M. Michels, L. A. Fothergill-Gilmore and M. D. Walkinshaw, J. 
Biol. Chem., 2010, 285, 12892–12898.

Figure S4. Types of allosteric mechanisms identified here after examining the structural and dynamics bases of natural allosteric modulators.



conformers, solvation and dynamics calculations might be necessary to dissect the logic of allosteric modulation type 
“ii”.24 Here we observed that and illustrated for the MRSA pyruvate kinase25 and the 20S proteasome.26 

Variations of type “i” and type “ii” allosteric modulation found in enzymes are observed in other proteins. A 
specific nomenclature is used for receptors, in particular for GPCRs - Figure S4 middle panel. The concept of NAM 
(negative allosteric modulation) and PAM (positive allosteric modulation) relates the cell-effect the allosteric modulator 
provokes. A very explanative review on this topic has been prepared by Changeux and Christopoulos,27 and the reader is 
referred to it.

Another variation of allosteric modulation type “i” and “ii” involves protein-protein interactions (PPIs). PPIs 
display a central role in biology, involving major steps in intracellular signalling, transcription, and enzyme-substrate 
recognition, when the enzyme’s substrate is another protein. In the latter case, the modulator of a PPI is also considered 
an allosteric modulator, once its binding site is located far away from the catalytic site. This type of allosteric modulator 
is classified here as allosteric modulator “PPI type”. This was observed by gossypol interaction with the PARP1 PPI 
interface, in this case however forming BRC dimers hampering the interaction of the BRC with PARP1 substrates.28 
Further, the change in the PPI interface can be indirect, being this change provoked by the allosteric modulator binding 
to the allosteric site, far away from the PPI interface. This can be viewed as a type “i” allosteric modulation, where the 
orthosteric site, however, is the PPI and not the catalytic site - Figure S4 bottom panel. The latter was observed in the 
CBP coactivator case exemplified in the main text.   

24 V. J. Hilser, J. O. Wrabl and H. N. Motlagh, Annu. Rev. Biophys., 2012, 41, 585–609.
25 R. Zoraghi, L. Worrall, R. H. See, W. Strangman, W. L. Popplewell, H. Gong, T. Samaai, R. D. Swayze, S. Kaur, M. Vuckovic, B. 
B. Finlay, R. C. Brunham, W. R. McMaster, M. T. Davies-Coleman, N. C. Strynadka, R. J. Andersen and N. E. Reiner, J. Biol. 
Chem., 2011, 286, 44716–44725.
26 P. A. Osmulski and M. Gaczynska, Mol. Pharmacol., 2013, 84, 104–113.
27 J. P. Changeux and A. Christopoulos, Diabetes, Obes. Metab., 2017, 19, 4–21.
28 Na Z, Peng B, Ng S, Pan S, Lee JS, Shen HM, Yao SQ. Angew Chem Int Ed Engl., 2015, 54(8), 2515-2519.


