Controllable synthesis of MoS₂@MoO₂ nanonetwork

to boost NO₂ room temperature sensing in air

Muhammad Ikram,^{a+} Lujia Liu,^{a+} Yang Liu,^a Mohib ullah,^a Laifeng Ma,^a Syed ul Hasnain Bakhtiar,^a Hongyuan Wu,^b Haitao Yu,^a Ruihong Wang,^{*a} and Keying Shi ^{*a}

Abstract: the supporting information provided shows: (i) TEM and HRTEM images of the as prepared MSO-1 nanocomposite, (ii) TEM and HRTEM images of MSO-3 nanocomposite, (iii), (iv), (v) TEM and HRTEM images of the flower like MoS₂ NSs, thin MoO₂ and thin MoO₃ nanoplates respectively, (vi) SEM images of the flower like MoS₂ NSs and of the MoO₃ thin nanoplates, (vii) EDS spectra and mapping of the MSO-2, (viii) XRD pattern of the MoO₃ nanoplates, (ix) XPS analysis of the pure MoS₂ NSs, (x) Fitted impedance parameters of the samples (xi) stability of the MSO-2 and of the pure MoS₂ NSs in air, (xii) response-recovery curve of the as fabricated samples, (xiii) calibration curve of MSO-2, and response/recovery time all of the sensors, (xiv) humidity effect, (xv) table of the comparative response and response/recovery time all of the samples, (xvi) Band diagram of the MoS₂ and MoO₂ before contact, (xvii) comparison of the present study with reported work.

Table of contents

S1 Cover page and abstract

S2 **Table of contents**

- S3 Fig. S1: TEM/HRTEM images of MSO-1 to show the edge growth $MoS_2 NSs$.
- S4 Fig. S2: TEM/HRTEM images of MSO-1 to indicated the high concentration of MoS₂ NSs
- S5 **Fig. S3:** TEM/HRTEM the flower like MoS₂ NSs to show complete sulfurization of the MoO₃ nanoplates
- S6 **Fig. S4, Fig S5:** TEM/HRTEM of the thin plates MoO₂ and MoO₃to represent high crystalinity.
- S7 Fig. S6, Fig. S7: SEM images of flower like MoS₂ NSs, and thin nanoplates of MoO₃, EDS spectra and mapping of the MSO-2 nanonetworks.
- S8 **Fig. S8, Fig S9:** XRD pattern of MoO₃ nanoplates, XPS spectra of Mo 3d and S 2p of the pure MoS₂ NSs.
- S9 Table S1, Fig S10: Fitted impedance parameters of samples, comparative stability of MSO-2 and of the pristine MoS₂ NSs in air.
- S10 Fig. S11: Response-recovery curve to different NO₂ concentration at RT in air.
- S11 Fig. S12, Fig S13: calibration curve of MSO-2 to 0.1-100 ppm NO₂, response/recovery time graphs all of the sensors.
- S12 Table S2, Scheme S1: response, response/recovery time values all of the sensors to NO₂ gas, Band diagram of MoS₂ and MoO₂ before contact.
- S13 Table S3: comparison of the present study gas sensing performance with reported work.

S14 Reference:

Fig. S1 (a) TEM image; (b-d) HRTEM images of MSO-1 nanocomposite (green line: MoS₂). HRTEM images showing defects and heterostructure interfaces).

Fig. S2 (a, b) TEM images (c, d) HRTEM images of MSO-3 nanocomposite (green line: MoS₂;

red line: MoO₂).

Fig. S3 (a-c) TEM images of flower like pure MoS₂ NSs; (d-f) HRTEM images of (a), (b) and (c).

Fig. S4 (a, b) TEM images of pristine MoO₂ thin nanoplates; (c, d) HRTEM images of (a) and

(b).

Fig. S5 (a) TEM images of MoO₃ thin nanoplates; (c, d) HRTEM images.

Fig. S6 SEM images of (a) Pure MoO₃; (b-d) MoS₂ NSs (which were formed with sulfurization of MoO₃ for 2 h).

Fig. S7 (a) SEM image, EDS spectra (inset in (a)) and elemental mapping of MSO-2.

Fig. S8 XRD diffraction pattern of MoO₃.

Fig. S9 (a, b) XPS spectra of Mo 3d and S 2p, respectively of the pure MoS₂ NSs.

Samples	MoS_2	MoO ₂	MSO-2
$R_{\Omega}(\Omega)$	74.4	69.1	45.3
R_{ct} (Ω)	7336	5145	1041

Fig. S10 The resistance of the MSO-2 sensor compared with pure MoS_2 sensor in air at RT, indicating the high stability of MSO-2 nanonetworks sensor compare to pure MoS_2 sensor.

As shown in Fig. S10, the pure MoS_2 is highly unstable in air and also in NO_2 atmosphere at RT, and the resistance of the devices increasingly shifting to lower compared to MSO-2 nanonetworks.

S9

Table S1. Fitted impedance parameters of samples

Fig. S11 The response-recovery curve of (a) MSO-1, (b) MSO-3, (c) pure MoO_2 , (d) pure MoS_2 to NO_2 gas at RT in air.

Fig. S12 (a) The calibration curve of MSO-2 sensor to 0.1-100 ppm NO₂; (b, c) Response time and recovery time all of the sensors.

Fig. S13 (a) The transient response-recovery of MSO-2 sensor to 10 ppm NO_2 in different humidity; (b) Response to 10 ppm NO_2 as a function of the relative humidity.

Sensors	MoS ₂			MoO ₂			MSO-1			MSO-2			MSO-3		
NO ₂ (ppm)	Response	Ts	T _r	Response	T _s	T _r	Response	Ts	T _r	Response	Ts	T _r	Response	Ts	Tr
100	1.47	11.7	30.4	1.32	3.2	37.3	7.79	2.1	81.1	19.43	1.06	22.9	14.73	2.1	26.1
50	1.34	7.4	38.4	1.28	1.6	42.1	6.44	2.6	80.0	17.30	2.1	25.6	11.22	1.0	28.8
30	1.25	9.0	32.5	1.19	2.6	41.0	3.18	2.1	64.5	13.71	3.2	19.2	7.29	1.6	43.2
10	1.39	3.2	39.4	1.12	5.3	25.2	2.29	3.2	72.5	12.33	2.1	24.0	6.01	2.1	34.2
5	1.40	4.2	38.4	1.11	4.8	33.6	1.63	6.9	48.5	5.81	2.6	22.4	4.41	3.2	34.2
3	1.24	2.1	35.2	1.02	8.5	18.1	1.52	5.8	47.4	3.84	3.7	16.0	1.12	2.6	15.4
0.5	1.22	7.4	34.6				1.18	8.0	37.3	1.79	3.2	14.0	1.09	3.7	22.4
0.3							1.04	12.2	18.1	1.12	4.2	17.0			
0.1										1.03	3.7	13.8			
	1														

Table S2. Response, response time and recovery time of the sensors to NO_2 at room temperature.

 T_s = Response Time (s), T_r = Recovery Time (s)

Scheme S1. Band diagram of MoS_2 and MoO_2 before contact.

Table S3. Comparison of the Gas-Sensing Performances of the $MoS_2@MoO_2$ Nanonetwork	
toward NO ₂ with Previous Works.	

Sensing material	NO ₂ conc. (ppm)	Operation temperature (°C)	Response/Recovery time (s)	Ref.
MoS ₂ microspheres	100	150	79/225	1
MoS ₂ flakes	100	RT(UV)	29/350	2
3D MoS ₂ aerogel	1	200	33/107	3
2D MoS ₂	500	RT	180/480	4
MoS ₂ /ZnO hetero- nanostructure	5	RT	40/40	5
MoS ₂ -MoO ₃	10	RT	19/182	6
MoS ₂ /Graphene Hybrid Aerogel	1	200	21.6/29.4	7
MoS_2/SnO_2	10	RT	408/162	8
RGO-MoS ₂ -CdS nanocomposite	0.2	75	25/34	9
ZnO/rGO nanocomposite	1	RT	75/132	10
Graphene-SnO ₂ nanocomposite	5	150	129/107	11
$2D SnS_2$	10	120	170/140	12
SnS ₂ /SnO ₂ nanoheterojunctions	1	100	299/143	13
MoS ₂ @MoO ₂	100/0.1	RT	1.06/22.9 (100 ppm)	This work
nanonetwork			3.7/13.8 (0.1 ppm)	

References

(1) Y. Li, Z. Song, Y. Li, S. Chen, S. Li, Y. Li, H. Wang and Z. Wang, *Sens. Actuators B: Chem.* 2019, **282**, 259-267.

(2) R. Kumar, N. Goel, and M. Kumar, ACS Sens. 2017, 2, 1744-1752.

(3) H. Long, L. Chan, A. H. Trochimczyk, L. E. Luna, Z. Tang, T. Shi, A. Zettl, C. Carraro, M. A. Worsley, and R. Maboudian, *Adv. Mater. Interfaces*, 2017, **4**, 1700217.

(4) Y. Zhao, J. G. Song, G. H. Ryu, K. Y. Ko, W. J. Woo, Y. Kim, D. Kim, J. H. Lim, S. Lee, Z. Lee, J. Park and H. Kim, *Nanoscale*, 2018, **10**, 9338–9345.

(5) Y. Han, D. Huang, Y. Ma, G. He, J. Hu, J. Zhang, N. Hu, Y. Su, Z. Zhou, Y. Zhang, and Z. Yang, *ACS Appl. Mater. Interfaces*, 2018, **10**, 22640–22649.

(6) R. Kumar, N. Goel, M. Mishra, G. Gupta, M. Fanetti, M. Valant, and M. Kumar, *Adv. Mater. Interfaces*, 2018, **5**, 1800071.

(7) H. Long, A. H. Trochimczyk, T. Pham, Z. Tang, T. Shi, A. Zettl, C. Carraro, M. A. Worsley, and R. Maboudian, *Adv. Funct. Mater.* 2016, **26**, 5158-5165.

(8) S. Cui, Z. Wen, X. Huang, J. Chang and J. Chen, Small, 2015, 11, 2305-2313.

(9) S. Shao, L. Che, Y. Chen, M. Lai, S. Huang and R. Koehn, *J. Alloys and Comp.*, 2019, 774, 1-10.

(10) Y. Xia, J. Wang, J. Xu, X. Li, D. Xie, L. Xiang and S. Komarneni, *ACS Appl. Mater*. *Interfaces*, 2016, **8**, 35454–35463.

(11) H. W. Kim, H. G. Na, Y. J. Kwon, S. Y. Kang, M. S. Choi, J. H. Bang, P. Wu and S. S. Kim, *ACS Appl. Mater. Interfaces*, 2017, **9**, 31667-31682.

(12) J. Z. Ou, W. Ge, B. Carey, T. Daeneke, A. Rotbart, W. Shan, Y. Wang, Z. Fu, A. F. Chrimes, W. Wlodarski, S. P. Russo, Y. X. Li and K. K. zadeh, *ACS Nano*, 2015, 9, 10313-10323.

(13) J. Hao, D. Zhang, Q. Sun, S. Zheng, J. Sun and Y. Wang, Nanoscale, 2018, 10, 7210-7217.