Supplementary Information

All-Dielectric Metasurface for Simultaneously Realizing Polarization Rotation and Wavefront Shaping for Visible Light

Song Gao,^a Chul-Soon Park,^a Sang-Shin Lee,*a and Duk-Yong Choi^{b,c}

^aDepartment of Electronic Engineering, Kwangwoon University, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, South Korea

^bLaser Physics Centre, Research School of Physics and Engineering, Australian National University, Canberra ACT 2601, Australia

^cCollege of Information Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, China

Fig. S1. (a) Simulated effective indices of the fundamental modes with respect to the (slow) uand (fast) v-axis. (b) Calculated phase shifts based on the simulated effective indices. The phase shifts are folded into $0-2\pi$. For each nanopost, blue line implies the absolute phase difference $|\Delta \phi_{u-v}|$ between the u- and v-axes.

Fig. S2 Transmitted light wavefronts relating to the E_x and E_y components for different incident light polarization angle φ_{in} .

For normally incident light with a polarization angle φ_{in} defined as the angle between the electric field and the x-axis, the wavefronts relating to the E_x and E_y component are simulated and shown in Fig. S2, where the polarization angle increases from 0° (x-polarized) to 90° (y-polarized), in steps of 15°. The transmitted x- and y-polarized light wavefronts gradually emerge and vanish, respectively, both exhibiting the same oblique propagation angle.