Supporting Information

Yuan-Y	uan Li.	et al.
	·····	~~~~

Doping-induced enhancement of crystallinity in polymeric carbon nitride nanosheets to improve the visible-light photocatalytic activity

Nanoscale, 2019

Yuan-Yuan Li¹, Bing-Xin Zhou¹, Hua-Wei Zhang¹, Shao-Fang Ma¹, Wei-Qing Huang^{1,#}, Wei Peng¹, Wangyu Hu², Gui-Fang Huang^{1,*}
1. Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China
2. School of Materials Science and Engineering, Hunan University, Changsha 410082, China

Experimental section

Materials

Urea (CO(NH₂)₂), sodium fluoborate (NaBF₄), alcohol (C₂H₆O), isopropyl alcohol(C₃H₈O), para benzoquinone (BQ), sodium sulfate (Na₂SO₄) and potassium hydroxide (KOH) are analytical grade and used directly without further treatment.

Preparation of photocatalysts

Synthesis of pure CN

Pure CN was prepared by a thermal polymerization method. Typically, 15 g urea with 20 mL of DI water was placed into a 100 mL ceramic crucible with a cover. Then the crucible was heated in a muffle furnace at 550 °C for 2 h at a heating rate of about 5 °C min⁻¹. Finally, the crucible was cooled naturally to room temperature, and CN powders with cream color were obtained.

Synthesis of CN-hot and CN-B/F nanosheets.

0.5 g of pure CN and a calculated mass of NaBF₄ were mixed and heated in a muffle furnace at 440 °C for 2 h at a heating rate of 5 °C min⁻¹. The obtained pale yellow mixture was filtrated by washing with distilled water and finally dried at 60 °C overnight. The weight of NaBF₄ are 0, 0.1, 0.2 and 0.3g, and the resulting CN-B/F samples are denoted as CN-hot, CN-B/F-1, CN-B/F-2, CN-B/F-3, respectively.

Characterization

The chemical structures of samples were determined by XRD to analysis the structure on

^{#*.}Corresponding author. E-mail address: wqhuang@hnu.edu.cn

^{*.}Corresponding author. E-mail address: gfhuang@hnu.edu.cn

Bruker with Cu K α radiation at 40 kV and 40 mA. FTIR spectra were recorded by an IR Affinity-1 FTIR spectrometer in the frequency 5 and range of 4000-450 cm⁻¹. XPS spectroscopy was evaluated to estimate the binding energies on a Thermo Scientific ESCALAB 250 instrument using monochromated Al K α source with radiation at 250 W. SEM images were obtained with a Quanta 250FEG Field emission scanning electron microscope. UV-vis spectroscopy performed by a Varian Cary 5000 spectrophotometer. PL measurements were carried out using Edinburgh FL/FS900 spectrophotometer.

Photoelectrochemical measurements

The photoelectrochemical tests were performed on a CHI660E electrochemical workstation using a three-electrode system. An Ag/AgCl and a Pt plate were used as the reference and counter electrode, respectively. The prepared samples coated on FTO film as working electrode was located in 0.1 mol L⁻¹ Na₂SO₄ aqueous electrolyte, which was chosen as the working electrode. The electrochemical impedance spectra (EIS) was carried out with the amplitude of the applied sine wave potential of 50 mV and a frequency ranging from 0.05 Hz to 100 kHz. The photocurrent response of the photocatalysts as light on and off was measured without bias voltage with a 55 W fluorescent lamp provided incident light. The Mott-Schottky (MS) plots were measured at a variety of frequency to determine band gap level.

Catalytic activity measurement

Degradation of MO, RhB, phenol and TC under visible light

The photocatalytic activity was evaluated by the degradation of methyl orange (MO), Rhodamine B (RhB) and phenol under a 300 W tungsten lamp as visible light source, and tetracycline hydrochloride (TC) with a 300 W Xe lamp with a 420 nm cutoff filter as visible light. Typically, MO, RhB and phenol (80 mL, 10 mg L⁻¹) with samples (10 mg), and TC (80 mL, 30 mg L⁻¹) with samples (50 mg) were mixed in a glass bottle in the dark with continuous ultrasound for 30 min at room temperature to reach the adsorption-desorption equilibrium between the dye and catalyst. During the photoreaction process, 5 mL mixture was collected in the 1 h intervals. Centrifugal supernatant liquor was measured using UV–vis spectroscopy (UV-5100, Anhui Wanyi) to record the maximum absorbance at 460 nm for MO, 550 nm for RhB, 270 nm for phenol and 360 nm for TC, respectively.

The OER experiment

The OER experiment was performed on an electrochemical work station (CHI 660E) with a three-electrode setup in 1.0 M KOH solution by using a graphite rod as the counter electrode and Ag/AgCl electrode as the reference electrode. 1.5 mg photocatalyst loaded on nickel foam (NF) glass (1 cm × 1 cm) was chosen as the working electrode. Linear sweep voltammetry (LSV) was carried out with a scan rate of 20 mV s⁻¹, and a 300 W tungsten lamp provided incident visible light. The recorded potentials were converted using the equation: $E_{RHE} = E_{Ag/AgCl} + 0.059 \times pH + 0.197$.

Figure S1. Zeta potential of CN, CN-hot, CN-B/F-1, CN-B/F-2 and CN-B/F-3.

S1.	Samplas	Ator	Atomic percentage atomic ratios				
	Samples	С	Ν	В	F	N/C	_
	CN	43.75%	56.25%	0	0	1.29	
	CN-B/F-2	42.98%	51.09%	5.31%	0.62%	1.19	

Summarized EDS data of C, N, B and F atom and surface N/C atom ratios of CN and CN-B/F-2.

Figure S2. XPS survey spectra for CN and CN-B/F-2.

Table S2. Summarized XPS data for CN and CN-B/F-2 surface N/C atom ratios determined from quantitative analyses are provided.

XP	S
samples	N/C
CN	1.48
B/F-CN	1.11

Table S3. Summarized XPS data for CN and CN-B/F-2 surface C, N, B and F atom ratios determined from quantitative analyses are provided.

XPS						
samples	С	N	В	F		
CN	41.29%	59.71%	0%	0%		
B/F-CN-0.2	45.32%	51.90%	1.92%	0.86%		

Table S4. Band positions of CN, CN-B/F-1, CN-B/F-2 and CN-B/F-3. All the values in tables are referenced to the electrochemical scale of the reversible hydrogen electrode.

Product	CB, eV (NHE)	VB, eV(NHE)	E _g , eV
CN	-0.89	1.96	2.85
CN-B/F-1	-0.70	2.13	2.83
CN-B/F-2	-0.63	2.18	2.81
CN-B/F-3	-0.77	2.02	2.79

Figure S3. SEM-EDS elemental mapping of CN.

 Table S5. Comparison of photodegradation efficiency of CN-B/F-2 photocatalyst with another CN-based photocatalysts under visible light irradiation.

Photocatalyst	Photocatalyst	Light	Model	Initial	Photodegradation	Ref.
	dosage (mg)	source	pollutant	concentration	efficiency (h-1	
				(mg/L)	10mg ⁻¹)	
CN-B/F-2	10	300W,	МО	10	0.12	This
		Halogen				work
		lamp				
S doped CN	70	300W,	MO	11	0.03	1
		Halogen				
B doped CN	200	300 W	MO	4	0.012	2
		Xe lamp				
O doped CN	100	300W	MO	10	0.016	3
		Xe lamp				
Al_2O_3/g - C_3N_4	100	350W	MO	10	0.046	4
		Xe lamp				
$MoO_3/g-C_3N_4$	100	350W	MO	10	0.106	5
		Xe lamp				
Ag_2O/g - C_3N_4	100	250W	MO	10	0.083	6
		infrared				
		lamp				
$LaCoO_3/g$ - C_3N_4	50	300 W	MO	10	0.0415	7
		Xe-arc				
		lamp				
Ag ₂ CrO ₄ /g-	50	300 W	MO	10	0.082	8
C_3N_4		Xe-arc				
		lamp				
CN-B/F-2	10	300W,	RhB	10	0.54	This
		Halogen				work
		lamp				
						_
flake-like	100	300W	RhB	10	0.126	9
porous CN		Xe lamp				
P doped CN	50	250 W	RhB	10	0.077	10
		high-				

9

		pressure				
		sodium				
		lamp				
O doped CN	100	300W	RhB	5	0.285	3
		Xe lamp				
Na/g-C ₃ N ₄	50	250 W	RhB	10	0.077	11
		high-				
		pressure				
		sodium				
		lamp				
$Ka/g-C_3N_4$	50	250 W	RhB	10	0.132	12
		high-				
		pressure				
		sodium				
		lamp				
Ka-Na/g-C ₃ N ₄	50	250 W	RhB	10	0.204	13
		high-				
		pressure				
		sodium				
		lamp				
[WO4] ^{2–} /g-	100	300 W	RhB	10	0.132	14
C_3N_4		Halogen				
		lamp				
	100					15
YVO ₄ /g-C ₃ N ₄	100	350W	RhB	10	0.234	15
		Xe lamp				10
TiO ₂ /In ₂ O ₃ /g-	80	30W	RhB	10	0.345	16
C_3N_4		Xe lamp				
$C_{2}O_{2}/\alpha \subset N_{2}/N_{2}$	100	2011/	DhD	10	0.15	17
rGO	100	20 W Xe lamp	NIID	10	0.13	
100		AC Iamp				

Figure S4. a) Phenol (10 mg/L) degradation and b) the slope of degradation for (10 mg) CN and CN-B/F-2 under visible light. c) TC (30 mg/L) degradation and d) the slope of degradation for (50 mg) CN and CN-B/F-2 under visible light.

References

- 1. M. Jourshabani, Z. Shariatinia and A. Badiei, J. Phys. Chem. C, 2017, 121, 19239-19253.
- 2. S. C. Yan, Z. S. Li and Z. G. Zou, Langmuir, 2010, 26, 3894-3901.
- 3. G. Dong, Z. Ai and L. Zhang, RSC Adv., 2014, 4, 5553-5560.
- F.-T. Li, S.-J. Liu, Y.-B. Xue, X.-J. Wang, Y.-J. Hao, J. Zhao, R.-H. Liu and D. Zhao, *Chem-Eur J.*, 2015, 21, 10149-10159.
- 5. Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan and M. Fan, RSC Adv.,

2014, 4, 13610-13619.

- S. Liang, D. Zhang, X. Pu, X. Yao, R. Han, J. Yin and X. Ren, Sep. Purif. Technol., 2019, 210, 786-797.
- J. Luo, X. Zhou, X. Ning, L. Zhan, L. Ma, X. Xu, S. Li and S. Sun, Sep. Purif. Technol., 2018, 201, 309-317.
- 8. J. Luo, X. S. Zhou, M. Lin, L. Ma and X. Y. Xu, Appl. Surf. Sci., 2016, 390, 357-367.
- 9. J. Yan, X. Han, X. Zheng, J. Qian, J. Liu, X. Dong and F. Xi, Mater. Res. Bull., 2017, 94, 423-427.
- 10. S. Hu, L. Ma, J. You, F. Li, Z. Fan, G. Lu, D. Liu and J. Gui, Appl. Surf. Sci., 2014, 311, 164-171.
- 11. J. Zhang, S. Hu and Y. Wang, RSC Adv., 2014, 4, 62912-62919.
- 12. S. Hu, F. Li, Z. Fan, F. Wang, Y. Zhao and Z. Lv, Dalton Trans., 2015, 44, 1084-1092.
- 13. J. Zhao, L. Ma, H. Wang, Y. Zhao, J. Zhang and S. Hu, Appl. Surf. Sci., 2015, 332, 625-630.
- 14. J. Ding, L. Wang, Q. Liu, Y. Chai, X. Liu and W.-L. Dai, Appl. Cata. B-Environ., 2015, 176, 91-98.
- J. Cai, Y. He, X. Wang, L. Zhang, L. Dong, H. Lin, L. Zhao, X. Yi, W. Weng and H. Wan, *RSC Adv.*, 2013, 3, 20862-20868.
- 16. Z. Jiang, D. Jiang, Z. Yan, D. Liu, K. Qian and J. Xie, Appl. Cata. B-Environ., 2015, 170, 195-205.
- 17. L. Wang, J. Ding, Y. Chai, Q. Liu, J. Ren, X. Liu and W.-L. Dai, *Dalton Trans.*, 2015, 44, 11223-11234.