## **Supporting Information**

## Facile synthesis of Pt-decorated Ir black as bifunctional oxygen catalyst for oxygen reduction and evolution reactions

Dahui Fang<sup>a,b</sup>, Xuejun Tang<sup>a,b</sup>, Limeng Yang<sup>a,b</sup>, Dongyan Xu<sup>c</sup>, Hongjie Zhang<sup>a</sup>, Shucheng Sun<sup>a</sup>, Zhigang Shao<sup>a,\*</sup> and Baolian Yi<sup>a</sup>

<sup>a</sup> Fuel Cell System and Engineering Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China;

<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, China;

<sup>c</sup> State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 99 Songling Road, Qingdao 266042, China;

\**E-mail: zhgshao@dicp.ac.cn.* 



Fig. S1 SEM-EDX spectrum and corresponding element mappings for the iridium and platinum

elements of Pt<sub>4</sub>@Ir<sub>96</sub>.



Fig. S2 SEM-EDX spectrum and corresponding element mappings for the iridium and platinum elements of  $Pt_{16}@Ir_{84}$ .



Fig. S3 XPS survey spectra of Pt black, Ir black,  $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$ .



Figure S3. SEM-EDX spectrum and corresponding element mappings for the iridium and platinum elements of  $Pt_{50} lr_{50}$ .

Fig. S4 SEM-EDX spectrum and corresponding element mappings for the iridium and platinum elements of  $Pt_{50}Ir_{50}$ .



Fig. S5 Comparisons of high-resolution XPS spectra of Ir 4f for  $Pt_{16}$ @Ir<sub>84</sub> initial and after electrochemical oxidation process (0.05-1.42 V, 60 cycles, 100 mV s<sup>-1</sup>).



Fig. S6 CV curves recorded between 0.05 and 1.42 V after electrochemical oxidation process  $(0.05-1.42 \text{ V}, 240 \text{ cycles}, 100 \text{ mV s}^{-1})$  for Pt<sub>50</sub>Ir<sub>50</sub>, Pt<sub>4</sub>@Ir<sub>96</sub> and Pt<sub>16</sub>@Ir<sub>84</sub>.



Fig. S7 ORR LSV curves for Pt black,  $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$ , with current normalized to the  $A_{ecsa}$  of Pt. The inset depicts their specific activities at 0.85 V calculated using Koutecky-Levich equation with background current subtracted and iR-drop corrected.

![](_page_4_Figure_2.jpeg)

**Fig. S8** TEM images (a) and (b), HAADF-STEM image and EDX mapping images (c) for Ptdecorated Ir black (Pt<sub>16</sub>@Ir<sub>84</sub>) after ORR test.

![](_page_5_Figure_0.jpeg)

**Fig. S9** High-resolution XPS spectra of (a) Pt 4f region and (b) Ir 4f region for Pt-decorated Ir black ( $Pt_{16}@Ir_{84}$ ) after ORR test. High-resolution XPS spectra of (c) Pt 4f region and (d) Ir 4f region for Pt-decorated Ir black ( $Pt_{16}@Ir_{84}$ ) after OER test.

![](_page_5_Figure_2.jpeg)

**Fig. S10** TEM images (a) and (b), HAADF-STEM image and EDX mapping images (c) for Ptdecorated Ir black (Pt<sub>16</sub>@Ir<sub>84</sub>) after OER test.

![](_page_6_Figure_0.jpeg)

**Fig. S11** High-resolution XPS spectra of (a) Pt 4f region and (b) Ir 4f region for  $Pt_{50}Ir_{50}$  after ORR ADT test. High-resolution XPS spectra of (c) Pt 4f region and (d) Ir 4f region for Pt-decorated Ir black ( $Pt_{16}@Ir_{84}$ ) after ORR ADT test.

![](_page_6_Figure_2.jpeg)

Fig. S12 TEM images (a) and (b), HAADF-STEM image and EDX mapping images (c) for Ptdecorated Ir black ( $Pt_{16}@Ir_{84}$ ) after ORR ADT test.

![](_page_7_Figure_0.jpeg)

Fig. S13 Comparisons of chronopotentiometry curves for  $Pt_{50}Ir_{50}$  and Pt-decorated Ir black  $(Pt_{16}@Ir_{84})$  recorded at current density of 10 mA cm<sup>-2</sup> in a N<sub>2</sub>-saturated 0.1 mol L<sup>-1</sup> HClO<sub>4</sub> solution.

![](_page_7_Figure_2.jpeg)

**Fig. S14** TEM images (a) and (b), HAADF-STEM image and EDX mapping images (c) for Ptdecorated Ir black (Pt<sub>16</sub>@Ir<sub>84</sub>) after OER ADT test.

![](_page_8_Figure_0.jpeg)

**Fig. S15** High-resolution XPS spectra of (a) Pt 4f region and (b) Ir 4f region for  $Pt_{50}Ir_{50}$  after OER ADT test. High-resolution XPS spectra of (c) Pt 4f region and (d) Ir 4f region for Pt-decorated Ir black ( $Pt_{16}@Ir_{84}$ ) after OER ADT test.

| Catalyst       | Pt (%) | Ir (%) | Pt <sup>0</sup> /Pt (%) | Ir <sup>0</sup> /Ir/ (%) |
|----------------|--------|--------|-------------------------|--------------------------|
| initial        | 31.8   | 68.2   | 92.6                    | 80.6                     |
| after ORR test | 29.8   | 70.2   | 90.8                    | 72.5                     |
| after OER test | 20.8   | 79.2   | 83.6                    | 17.6                     |

Table S1 Surface atomic ratios, proportions of oxidation states taken from XPS analysis for

 $Pt_{16}$ @Ir<sub>84</sub> catalyst initial and after ORR or OER test

Table S2 Comparisons of ORR mass activity at 0.85 V and OER mass activity at 1.53 V for

 $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$  catalysts evaluated initial and after ADT

| Catalyst                                     | $j_{\rm k} = 0.85  {\rm V/mA}^{ {\rm mg}_{\rm Pt}^{-1}}$ | $j_{\rm m}@1.53 {\rm V/mA} {\rm mg}_{\rm Ir}^{-1}$ |
|----------------------------------------------|----------------------------------------------------------|----------------------------------------------------|
| Pt <sub>50</sub> Ir <sub>50</sub> initial    | 53.8                                                     | 214.8                                              |
| $Pt_{50}Ir_{50}$ after ADT                   | 15.6                                                     | 91.0                                               |
| Pt <sub>16</sub> @Ir <sub>84</sub> initial   | 373.3                                                    | 151.6                                              |
| Pt <sub>16</sub> @Ir <sub>84</sub> after ADT | 314.6                                                    | 175.6                                              |

Table S3 Comparisons of surface atomic ratios, proportions of oxidation states taken from XPS

| analysis for $Pt_{50}Ir_{50}$ and $Pt_{16}$ $@Ir_{84}$ catalysts evaluated initial and after ORR ADT terms of the term of terms of the term of term of term of terms of term of terms of term | st |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|

| Catalyst                                     | Pt (%) | Ir (%) | Pt <sup>0</sup> /Pt (%) | Ir <sup>0</sup> /Ir/ (%) |
|----------------------------------------------|--------|--------|-------------------------|--------------------------|
| Pt <sub>50</sub> Ir <sub>50</sub> initial    | 46.6   | 53.4   | 70.6                    | 88.3                     |
| $Pt_{50}Ir_{50}$ after ADT                   | 23.7   | 76.3   | 66.3                    | 35.4                     |
| Pt <sub>16</sub> @Ir <sub>84</sub> initial   | 31.8   | 68.2   | 92.6                    | 80.6                     |
| Pt <sub>16</sub> @Ir <sub>84</sub> after ADT | 26.4   | 73.6   | 88.2                    | 66.1                     |

Table S4 ICP-OES results for  $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$  catalysts tested after ORR ADT

| Catalyst                           | Pt content in electrolyte | Pt mass retention ratio | Ir content in electrolyte | Ir mass retention ratio |
|------------------------------------|---------------------------|-------------------------|---------------------------|-------------------------|
| -                                  | /ppm                      | /%                      | /ppm                      | /%                      |
| Pt <sub>50</sub> Ir <sub>50</sub>  | 0.217                     | 54.7                    | 0.019                     | 96.1                    |
| Pt <sub>16</sub> @Ir <sub>84</sub> | 0.017                     | 88.8                    | 0.028                     | 96.5                    |

| Catalyst                                     | Pt (%) | Ir (%) | Pt <sup>2+</sup> /Pt (%) | Ir <sup>4+</sup> /Ir/ (%) |
|----------------------------------------------|--------|--------|--------------------------|---------------------------|
| Pt <sub>50</sub> Ir <sub>50</sub> initial    | 46.6   | 53.4   | 29.4                     | 11.7                      |
| Pt <sub>50</sub> Ir <sub>50</sub> after ADT  | 75.7   | 24.3   | 44.1                     | 95.5                      |
| Pt <sub>16</sub> @Ir <sub>84</sub> initial   | 31.8   | 68.2   | 7.4                      | 19.4                      |
| Pt <sub>16</sub> @Ir <sub>84</sub> after ADT | 20.4   | 79.6   | 13.8                     | 82.6                      |

**Table S5** Comparisons of surface atomic ratios, proportions of oxidation states taken from XPSanalysis for  $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$  catalysts evaluated initial and after OER ADT test

Table S6 ICP-OES results for  $Pt_{50}Ir_{50}$  and  $Pt_{16}@Ir_{84}$  catalysts tested after OER ADT

|                                    | Pt content in | Pt mass         | Ir content in | Ir mass         |
|------------------------------------|---------------|-----------------|---------------|-----------------|
| Catalyst                           | electrolyte   | retention ratio | electrolyte   | retention ratio |
|                                    | /ppm          | /%              | /ppm          | /%              |
| Pt <sub>50</sub> Ir <sub>50</sub>  | 0.112         | 76.6            | 0.300         | 37.4            |
| Pt <sub>16</sub> @Ir <sub>84</sub> | 0.029         | 81.0            | 0.065         | 91.9            |

**Table S7** Comparisons of potential gap ( $\Delta E$ ) between the OER potential at a current density of 10

mA cm<sup>-2</sup> ( $E_{j=10}$ ) and the ORR potential at a current density of -3 mA cm<sup>-2</sup> ( $E_{j=-3}$ ) for Pt<sub>50</sub>Ir<sub>50</sub> and

|                                    | OER                                                   | ORR                                                   | $\Delta E$                  |
|------------------------------------|-------------------------------------------------------|-------------------------------------------------------|-----------------------------|
| Catalyst                           | Potential at 10 mA cm <sup>-2</sup><br>$(E_{j=10}/V)$ | Potential at -3 mA cm <sup>-2</sup><br>$(E_{j=-3}/V)$ | $= E_{j=10} - E_{j=-3}$ /mV |
| Pt <sub>50</sub> Ir <sub>50</sub>  | 1.592                                                 | 0.761                                                 | 831                         |
| Pt <sub>16</sub> @Ir <sub>84</sub> | 1.519                                                 | 0.838                                                 | 681                         |