Plasmonic-enhanced catalytic activity of methanol oxidation on Augraphene-Cu nanosandwiches

Yaxing Liu,^{a,b} Fuyi Chen,^{*a,b,c} Qiao Wang,^{a,c} Junpeng Wang,^{a,c} Jiali Wang,^{a,c} Longfei Guo,^{a,c} and Tesfaye Tadesse Gebremariam^c

^a State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China

^b School of Electronics and Information, Northwestern Polytechnical University, Xi'an 710072, China

^c School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China

*Corresponding author:

Fuyi Chen

State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xian, 710072, P. R. China

Email: fuyichen@nwpu.edu.cn

Figure S1 Selected-area electron diffraction pattern of AuNPs in (a) Au–3T/SG/Cu and (b) Au–10T/SG/Cu catalytic electrodes.

Figure S2 XRD patterns of Au–3T/SG/Cu, Au–6T/SG/Cu and Au–10T/SG/Cu catalytic electrodes compared with that of SG/Cu and Cu foil. The insets indicate the details of the corresponding diffraction peaks. Bar diagram: Au #04-0784 and Cu #04-0836.

Figure S3 Tapping-mode AFM images of (a) Cu foil and (b) single-layer graphene on the Cu foil (SG/Cu) sample. (Scale bar of 200 nm).

Figure S4 Raman spectra of the Au–6T/SG/Cu catalytic electrode and the SG/Cu sample.

Figure S5 (a) Cross-sectional HR-TEM image of Au–6T/SG/Cu catalytic electrode. (b) and (c) IFFT images corresponding to the two selected areas in (a). (d) Cross-sectional HR-TEM image of SG/Cu sample.

Figure S6 Morphology characterisations of Au–n/SG/Cu catalytic electrode. (a–c) FE-SEM and (a–e) tapping-mode AFM images of Au–3T/SG/Cu, Au–6T/SG/Cu and Au–10T/SG/Cu catalytic electrodes, respectively. (Scale bar of 100 nm).

Figure S7 (a) Diffuse reflectance UV–vis absorption spectra of Cu foil, SG/Cu and Au–n/SG/Cu catalytic electrodes (n = 1T, 2T, 3T, 4T, 5T, 6T, 8T, 10T, 12T, 14T). (b) Cross-sectional plasmonic near-field distribution of Au–6T/SG/Cu catalytic electrode at excitation wavelength of 565 nm. The electrical field was investigated using FDTD method.

Sample	Photocurre	I _{MOR}			Deferences
	nt	Dark	Light	Light/ Dark	References
Au–6T/SG/Cu	303 (μΑ μg ⁻¹)	167 (µА µg-¹)	288 (µA µg⁻¹)	1.72	This work
Au NPs/GC	1.1 (μΑ)	0.65 (μΑ)	1.2 (μΑ)	1.85	1
Au DNFs	250 (μΑ)	0.95 (µA µg⁻¹)	3.14 (µА µg⁻¹)	3.3	2
Au/TiO ₂	0.6 (mA cm ⁻¹)	0.61 (mA cm ⁻¹)	1.11 (mA cm ⁻¹)	1.82	3
Au-CA	215 (μΑ μg ⁻¹)	116 (μΑ μg ⁻¹)	249 (μΑ μg⁻¹)	2.15	4
Au@TiO ₂			5 (mA cm ⁻¹)		5
MWNT-g-PANI-Au		17 (μA cm ⁻¹)			6
Au/C		75 (mA mg ⁻¹)			7
Porous Au nanotubes		23 (µA µg⁻¹)			8
np-Au		17.5 (μΑ μg ⁻¹)			9
(Au/GO) _n multilayer		2.2 (mA cm ⁻¹)			10

Table S1 Performance parameters of the photocurrent, the anodic peak current for MOR and the ratio of anodic peak current for MOR under light/dark.

Figure S8 Effects of methanol concentrations on the methanol oxidation performance of Au– 6T/SG/Cu catalytic electrode in a deoxygenated solution of 1.0 M KOH. (a) CV curves of Au– 6T/SG/Cu catalytic electrode recorded at various methanol concentrations. (b) Anodic peak currents during methanol oxidation on Au–6T/SG/Cu catalytic electrode at various methanol concentrations.

Figure S9 Effects of alkaline concentrations on the methanol oxidation performance of Au-6T/SG/Cu catalytic electrode. (a) CV curves of Au-6T/SG/Cu catalytic electrode recorded in a deoxygenated solution of various KOH concentrations mixed with 1.5 M CH₃OH. (b) Anodic peak currents during methanol oxidation on Au-6T/SG/Cu catalytic electrode at various KOH concentrations.

Figure S10 Effect of sweep rate on the methanol oxidation performance of Au–6T/SG/Cu catalytic electrode in a deoxygenated solution of 1.0 M KOH and 1.5 M CH₃OH. (a) CV curves of Au–6T/SG/Cu catalytic electrode recorded at various sweep rates. (b) Anodic peak currents for MOR and broad peak currents for OH⁻ chemisorption during methanol oxidation on Au–6T/SG/Cu catalytic electrode at various sweep rates.

Figure S11 CV curves of Au–6T/SG/Cu catalytic electrode recorded in a deoxygenated solution of 1.0 M KOH in the presence and absence of simulated solar light irradiation.

Figure S12 (a) CV curves of Au–3T/SG/Cu, Au–6T/SG/Cu and Au–10T/SG/Cu catalytic electrodes recorded in a deoxygenated solution of 1.0 M KOH containing 1.5 M CH₃OH under the simulated solar light irradiation or not. (b) Anodic peak currents for MOR and OH⁻ chemisorption during the methanol oxidation on Au–n/SG/Cu (n = 1T-14T) catalytic electrodes in the presence and absence of simulated solar light irradiation.

Figure S13 Effect of simulated solar irradiation on the methanol oxidation reaction of various Au–n/SG/Cu catalytic electrodes (n = 1T, 2T, 3T, 4T, 5T, 6T, 8T, 10T, 12T, 14T) in a deoxygenated solution of 1.0 M KOH and 1.5 M CH₃OH. CV curves recorded in the (a) absence and (b) presence of simulated solar irradiation.

Figure S14 (a) Chronoamperogram of the Au–6T/SG/Cu at the potential of methanol oxidation (0.31 V) in a deoxygenated solution of 1.0 M KOH containing 1.5 M CH₃OH for 48 hours. (b) CV curves of Au–6T/SG/Cu catalytic electrode recorded in a deoxygenated solution of 1.0 M KOH containing 1.5 M CH₃OH before and after the long-term stability test.

Figure S15 CV curves of Au–6T/SG/Cu catalytic electrode recorded in a deoxygenated solution of 1.0 M KOH containing 1.5 M CH₃OH in the (a, c) absence and (b, d) presence of simulated solar light irradiation.

Figure S16 HR-XPS spectra of (a) Au 4f and (b) Cu 2p in the Au–6T/SG/Cu catalytic electrode before and after electrochemical tests and the comparable sample of Au foil, Cu foil, SG/Cu. HR-XPS spectra of (c) C 1s and (d) O 1s in the Au–6T/SG/Cu catalytic electrode after the electrochemical tests.

Figure S17 XRD patterns of Au–6T/SG/Cu catalytic electrode catalytic electrode before and after the electrochemical test. The diffraction peaks location for crystalline Au and Cu were confirmed by the JCPDS No. 04-0784 and 04-0836, respectively.

Notes and references

- 1. C. Wang, X. G. Nie, Y. Shi, Y. Zhou, J. J. Xu, X. H. Xia and H. Y. Chen, ACS nano, 2017, **11**, 5897-5905.
- C. T. Lin, M. N. Chang, H. J. Huang, C. H. Chen, R. J. Sun, B. H. Liao, Y. F. C. Chau, C. N. Hsiao, M. H. Shiao and F. G. Tseng, *Electrochim Acta*, 2016, **192**, 15-21.
- 3. Z. Jin, Q. Wang, W. Zheng and X. Cui, Acs Appl Mater Inter, 2016, 8, 5273.
- 4. Y. Liu, F. Chen, Q. Wang, J. Wang, J. Wang and T. T. Gebremariam, J Mater Chem A, 2018, 6, 10515-10524.
- 5. M. Zhao, H. Xu, S. Ouyang, H. Tong, H. Chen, Y. Li, L. Song and J. Ye, Acs Catal, 2018, **8**, 4266-4277.
- 6. P. Santhosh, A. Gopalan and K. P. Lee, *J Catal*, 2006, **238**, 177-185.
- 7. S. H. Yan, S. C. Zhang, Y. Lin and G. R. Liu, *J Phys Chem C*, 2011, **115**, 6986-6993.
- 8. X. X. Yin, N. L. Teradal and R. Jelinek, *Chemistryselect*, 2017, **2**, 10960-10960.
- 9. S. Pedireddy, H. K. Lee, W. T. Weng, I. Y. Phang, R. T. Hui, Q. C. Shu, C. Troadec and Y. L. Xing, *Nature Communications*, 2014, **5**, 4947.
- 10. Y. Choi, M. Gu, J. Park, H. K. Song and B. S. Kim, *Adv Energy Mater*, 2012, **2**, 1510-1518.