Electronic Supplementary Information

Constructing hyperbranched polymers as stable elastic framework for copper sulfide nanoplates enhancing sodium-storage performance

Aiqiong Qin,^a Hao Wu,^a Jie Chen,^a Ting Li,^a* Shenghui Chen,^a Daohong Zhang,^a* and Fei Xu^b*

^a Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission & Ministry of Education, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, P. R. China.
^b School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China.

Corresponding Author

*Ting Li (liting@mail.scuec.edu.cn)*Daohong Zhang (zhangdh27@163.com)*Fei Xu (xufei2058@whu.edu.cn)

Supplementary data: Additional figures and tables as mentioned in the text

1. Synthesis scheme and structure characterization of AHP

Figure S1. Synthesis scheme and structure of AHP.

Figure S2a shows main absorption peaks include 3279 cm⁻¹ (s, N-H), 2932 cm⁻¹ and 2846 cm⁻¹ (s, C-H), 1647 cm⁻¹ (s, C=O), and 1563 cm⁻¹ (b, C-N). Figure S2b shows chemical shifts include 8.62-7.37 ppm (m, 1H, -CONH-), 3.60 ppm (s, 2H, -NHCH₂CH₂NH-), 3.27 ppm (s, 2H, -COCH₂CH₂-), 2.6 ppm (ddt, 4H, -NCH₂CH₂N-), 2.3 ppm (s, 2H, -COCH₂CH₂-), and 1.8 ppm (s, 2H, -NH₂).

Figure S3. TGA curves of (a) Cu₉S₅ NP and Cu₉S₅-AHP-1.5, (b) AHP, Cu₉S₅-AHP-

0.5 and Cu₉S₅-AHP-2 in N₂ atmosphere at a heating rate of 10 $^{\circ}$ C min⁻¹

3. FT-IR and Raman characterization of Cu₉S₅-AHP-1.5

Figure S4. FT-IR (a) and Raman (b) spectra of Cu₉S₅-AHP-1.5 and AHP.

The presence of AHP is confirmed by IR peaks at 2932, 2846, and 1647 cm⁻¹, and Raman bands at \sim 1350 and \sim 1500 cm⁻¹.

4. ICP-OES analysis of Cu₉S₅-AHP-1.5 sample

Concentration (mg L ⁻¹)				
57.26				
17.98				

Table S1 The results of ICP-OES analysis of Cu₉S₅-AHP-1.5 sample.

atomic ratio of Cu/S = 1.59:1

5. Na-storage performances of Cu₉S₅ NP, Cu₉S₅-AHP and AHP electrodes.

Figure S5. Coulombic efficiency in 1 M NaPF₆ + DOL-DME (1:4 by volume) at 100 mA g^{-1}

Figure S6 Charge/discharge curves of (a) AHP and Super P (1:1), (b) Super P and cycling performance (c) at 100 mA g⁻¹.

The specific capacities are calculated based on the mass of Super P only to illustrate the contribution of AHP. The AHP and Super P (1:1) electrode delivers a reversible capacity of ~120 mAh g⁻¹, while the that for Super P electrode is ~110 mAh g⁻¹. Therefore, the capacity of AHP is estimated to be about 20 mAh g⁻¹.

Figure S7. Charge/discharge curves of (a) Cu_9S_5 NP and (b) Cu_9S_5 -AHP-1.5 at various current densities.

Figure S8. Discharge/charge profiles of Cu₉S₅-AHP-1.5 at 1000 mA g⁻¹.

6. The morphologies of Cu₉S₅-AHP-1.5 and Cu₉S₅ NP electrodes before and after cycling

Figure S9. TEM images of Cu_9S_5 -AHP-1.5 (a) at initial state, (b) after 300 cycles and Cu_9S_5 NP (c) at initial state, (d) after 300 cycles at 100 mA g⁻¹.

7. Comparison of the results in this study with those of previously reported in the literatures.

Table S2 Comparison of the results in this study with those of previously reported in the literatures.

Materials	electrolyte	Voltage range (V)	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	Cycles/ Retain capacity (mAh g ⁻¹)	ned ref
Cu ₉ S ₅ -AHP-1.5	NaPF ₆ -DOL/DME	0.01~3.0	100	459.5	200/412.9	This work
			1000	445.9	1000/365.6	
Cu _{1.8} S	NaCF ₃ SO ₃ -DEGDME	0.1~2.2	84	~330	50/~250	1
		0.5~2.2	84	~200	50/~260	1
		0.7~2.2	84	~110	50/~130	1
		0.5~2.2	840	~150	1000/~240	1
Cu ₉ S ₅	NaClO ₄ -EC/PC	0.01~3.0	100	412	200/344.3	2
CuS	NaPF ₆ - DME	1.0~3.0	31	348.6	100/41.8	3
CuS(S48)	NaClO ₄ - DME	0.3~2.2	5000	132.6	5000/132	4
Cu_2S	NaCF ₃ SO ₃ -TEGDME	0.4~2.6	50	294	20/261	5
CuS-NDs	NaPF ₆ - DEGDME	0.01~2.7	100	610	500/300	6
CuS	NaClO ₄ -TEGDME	0.1~3.0	50	~475	50/~5	7
		0.6~3.0	50	~410	50/~170	7
		0.7~3.0	50	~200	50/~80	7
	NaClO ₄ -EC/DEC	0.6~3.0	50	~360	50/~0	7
CuS	NaCF ₃ SO ₃ - DEGDME	0.4~2.6	100	400	50/311.8	8
CuS-RGO-1	NaCF ₃ SO ₃ - DEGDME	0.4~2.6	100	494.2	50/381.7	8
			1000	345.7	450/~340	8
CuS-RGO-2	NaCF ₃ SO ₃ - DEGDME	0.4~2.6	100	509.1	50/392.9	8
CuS-RGO-3	NaCF ₃ SO ₃ - DEGDME	0.4~2.6	100	432.5	50/328.9	8
Cu ₂ S	NaPF ₆ -DME	0.01~2.5	5000	317	5000/~280	9

8.	Electrochemical	impedance	spectra	(EIS)	analysis	of	Cu ₉ S ₅ -AHP-1.5	and
Cu9	S ₅ NP at initial st	ate and the	full char	ge stat	e after 10	0 cy	vcles	

Table S3 Simulation results of the EIS using the equivalent circuit.							
	Cu ₉ S ₅ N	NP	Cu ₉ S ₅ -AHP-1.	5			
Cycle	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$	$R_{SEI}(\Omega)$	$R_{ct}(\Omega)$			
Before	26.49	334.5	8.7	113.9			
100th Cycle	0.657	1078	0.01	3.2			

 R_{SEI} and R_{ct} are the resistances of solid electrolyte interface (SEI) film and charge transfer, respectively.

9. Cyclic voltammetry analysis of Cu₉S₅ electrodes and relationship of peak current (i_p) with square root of scan rate $(v^{1/2})$ and scan rate (v), respectively

Figure S10. Log(i) vs log(v) plots for different redox peaks of Cu₉S₅-AHP-1.5 electrode.

Figure S11. (a) CV curves at different scan rates, (b) linear relationship between peak current (i_p) and square root of scan rate $(v^{1/2})$, (c) Log(i) vs log(v) plots for different redox peaks of Cu₉S₅ NP electrode.

10. Calculation of Na⁺ diffusion coefficient of Cu₉S₅-AHP-1.5 and Cu₉S₅ NP from CV

		Cu ₉ S ₅ -AHP	Cu ₉ S ₅			
peak	$i_{\rm p}/v^{1/2}$ D (×10 ⁻⁹ cm ² s ⁻¹)		$\dot{i}_{\rm p}/v^{1/2}$	D (×10 ⁻¹⁰ cm ² s ⁻¹)		
C1	0.0401	1.602	0.0361	6.707		
C2	0.0714	0.2956	0.0624	1.078		
A1	0.0342	0.2170	0.0347	0.8515		
A2	0.0698	5.730	0.0406	6.183		

Table S4 The results of diffusion coefficient of Na⁺ calculated by CV.

The diffusion coefficient of Na⁺ is calculated by the following equation (S1):^{10,11}

$$i_p = 2.69 \times 10^5 n^{3/2} A D^{1/2} v^{1/2} C_{\theta}$$
 (1)

where i_p is the peak current (A), *n* is the number of electrons per molecule during the reaction, *A* is the contact area between the electrode and electrolyte, *D* is the diffusion coefficient of Na⁺ (cm² s⁻¹), *C*₀ is the concentration of Na⁺ ion in the electrode material, and *v* is the scan rate (V s⁻¹).

11. A single GITT titration and the corresponding linear behavior of *E* vs. $\tau^{1/2}$ relationship

Figure S12. A single GITT titration and the corresponding linear behavior of *E* vs. $\tau^{1/2}$ relationship: (a, b) Cu₉S₅-AHP-1.5 during discharge processes; (c, d) Cu₉S₅-AHP-1.5 during charge processes; (e, f) Cu₉S₅ NP during discharge processes; (g, h) Cu₉S₅ NP during charge processes.

12. N2 adsorption-desorption isotherm of Cu₉S₅-AHP-1.5 and Cu₉S₅NP

Figure S13. N_2 adsorption-desorption isotherm curves of Cu_9S_5 -AHP-1.5 and Cu_9S_5 NP. The specific surface areas of Cu_9S_5 -AHP-1.5 and Cu_9S_5 NP are 5.73 and 1.58 m² g⁻¹, respectively.

13. Calculation of Na⁺ diffusion coefficient of Cu₉S₅-AHP-1.5 and Cu₉S₅ NP from CV and GITT

Table S5 The results of diffusion coefficient of Na⁺ calculated by CV and GITT

	Cu ₉ S ₅ -AEHPA			Cu ₉ S ₅				
	(×10 ⁻⁹ cm ² s ⁻¹)				(×10 ⁻¹⁰ cm ² s ⁻¹)			
	C1	C2	A1	A2	C1	C2	A1	A2
CV	1.602	0.2956	0.2170	5.730	6.707	1.078	0.8515	6.183
GITT	1.647	0.4136	0.7737	1.381	5.354	1.476	0.2665	2.867

References

- H. Park, J. Kwon, H. Choi, D. Shin, T. Song and X. W. D. Lou, *ACS Nano*, 2018, 12, 2827-2837.
- 2 M. Jing, F. Li, M. Chen, J. Zhang, F. Long, L. Jing, X. Lv, X. Ji and T. Wu, J. *Alloys Comp.*, 2018, **762**, 473-479.
- 3 B. Shi, W. Liu, K. Zhu and J. Xie, Chem. Phys. Lett., 2017, 677, 70-74.
- 4 C. An, Y. Ni, Z. Wang, X. Li and X. Liu, *Inorg. Chem. Front.*, 2018, **5**, 1045-1052.
- 5 J. Kim, D. Kim, G. Cho, T. Nam, K. Kim, H. Ryu. J. Ahn and H. Ahn, *J. Power Sources*, 2009, **189**, 864-868.
- 6 N. R. Kim, J. Choi, H. L. Yoon, M. E. Lee, S. U. Son, H. Jin and Y. S. Yun, ACS Sustain. Chem. Eng., 2017, 5, 9802-9808.
- H. Li, Y. Wang, J. Jiang, Y. Zhang, Y. Peng and J. Zhao, *Electrochim. Acta*, 2017, 247, 851-859.
- 8 J. Li, D. Yan, T. Lu, W. Qin, Y. Yao and L. Pan, ACS Appl. Mater. Interfaces, 2017, 9, 2309-2316.
- 9 H. Li, K. Wang, S. Cheng and K. Jiang, ACS Appl. Mater. Interfaces, 2018, 10, 8016-8025.
- 10 Z. Wei, D. Wang, M. Li, Y. Gao, C. Wang, G. Chen and F. Du, Adv. Energy Mater., 2018, 8, 1801102.
- Y. Yang, Y. Tang, G. Fang, L. Shan, J. Guo, W. Zhang, J. Zhou, C. Wang, L. Wang, and S. Liang, *Energy Environ. Sci.*, 2018, 11, 3157-3162.