Supplementary Information

Employing LiCl Salt Gradient in the Wild-type α-Hemolysin Nanopore to Slow Down DNA Translocation and Detect Methylated Cytosine

Trang Vu, Julia Borgesi[§], Joanna Soyring[§], Melissa D'Alia, Shanna-Leigh Davidson, and Jiwook Shim*

Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA.

§ Authors with equal contributions

*Corresponding Author:

Jiwook Shim, Ph.D. Department of Biomedical Engineering Henry M. Rowan College of Engineering Rowan University 201 Mullica Hill Road Glassboro, NJ 08028 Email: <u>shimj@rowan.edu</u> Phone: (856) 256-5393

Figure S1.

Figure S1. Sample data traces and current blockage events of 18b-0mC in KCl electrolyte buffers with varied concentrations. Different ionic concentrations between the *cis*- and the *trans* side lead to significant changes in events dwell time and occurrence. All data were collected at 120mV, pH of 7.2.

Figure S2. Sample data traces and current blockage events of 18b-0mC in LiCl electrolyte buffers with varied concentrations. Different ionic concentrations between the *cis*- and the *trans* side lead to significant changes in events dwell time and occurrence. All data were collected at 120mV, pH of 7.2.

Figure S3. Gaussian fittings of 18b-0mC and 18b-2mC samples' event blockages at: 1M-1M KCI, 1M-1M LiCI, 1M-3M LiCI, and 0.2M-3M LiCI. As the concentration gradient between *cis*- and *trans* chamber increases, the peak-to-peak distance between two samples also increases. All data were collected at 120mV at pH 7.2 solutions.

 Table S1. Summary of event analysis for 18b-0mC sample in various KCI electrolyte solutions.

	Amplitude (pA)		Dwell tir	me (ms)	Frequency		
	mu	sigma	tau	S.E.	tau	S.E.	
1M -3M KCI	-179.054	3.823	0.317	0.038	10.083	0.383	
1M-1M KCI	-101.79	6.66776	0.166	0.003	6.719	0.433	
3M -3M KCI	-282.989	4.841	0.471	0.015	1.303	0.056	
3M - 1M KCI	-169.382	4.559	0.132	0.011	0.979	0.080	
3M - 0.2M KCI	-109.720	2.340	0.140	0.067	0.237	0.035	

(Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric concentration are denoted in the order of cis – trans concentration)

		Conc.	Amplitude (pA)		Dwell time (ms)		Frequency	
		Trans/ Cis	mu	sigma	tau	S.E.	tau	S.E.
Cis - Trans LiCl Concentration	0.2M - 3M LiCl	15	-79.63	2.499	0.945	0.083	55.615	3.323
	0.3M - 3M LiCl	10	-88.349	0.468	0.879	0.05	52.029	4.703
	0.5M - 3M LiCl	6	-87.14	0.206	0.81	0.06	47.619	2.082
	1M - 3M LiCl	3	- 137.402	4.387	0.673	0.023	34.536	1.721
		1.5	-					
	2M - 3M LiCl		152.285	3.653	0.566	0.071	2.439	0.156
	3M - 3M LiCl	1	- 166.352	3.387	0.517	0.023	0.675	0.088
ing	3M - 1M LiCl	0.333	-168.14	4.301	0.192	0.016	1.474	0.132
Varyi	3M - 0.2M LiCl	0.067	- 149.221	0.606	0.182.89	0.011	0.940	0.126
÷.	1M - 1M LiCl	1	-79.273	3.54	0.382	0.02	4.8	0.313
Re	1M - 1M KCl	1	-101.79	6.667	0.166	0.003	6.719	0.433

 Table S2.
 Summary of event analysis for 18b-0mC sample in various LiCl electrolyte solutions.

(Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric concentration are denoted in the order of cis – trans concentration)

		Conc.	Amplitud	le (pA)	Dwell tir	me (ms)	Frequ	Frequency	
		Trans /Cis	mu	sigma	tau	S.E.	tau	S.E.	
Varying Cis - Trans LiCl ef. Concentration	0.2M - 3M LiCl	15	-74.027	2.556	0.765	0.078	59.841	1.817	
	0.3M - 3M LiCl	10	-84.080	6.238	0.687	0.024	47.360	1.791	
	0.5M - 3M LiCl	6	-83.467	5.381	0.702	0.030	42.680	2.134	
	1M - 3M LiCl	3	-131.212	4.726	0.627	0.019	35.307	4.351	
	2M - 3M LiCl	1.5	-151.73	4636	0.523	0.119	2.072	0.202	
	3M - 3M LiCl	1	-164.902	3.184	0.451	0.014	1.028	0.060	
	3M - 1M LiCl	0.333	-165.729	4.850	0.177	0.030	1.354	0.445	
	3M - 0.2M LiCl	0.067	-149.558	2.690	0.169	0.010	0.707	0.213	
	1M - 1M LiCl	1	-77.5013	5.252	0.362	0.021	7.037	0.773	
Re	1M - 1M KCl	1	-101.058	4.382	0.157	0.010	10.296	1.078	

 Table S3.
 Summary of event analysis for 18b-2. mC sample in various LiCl electrolyte solutions.

(Note: All data were collected at 120mV, pH 7.2. Experiments with asymmetric concentration are denoted in the order of cis – trans concentration)