Electronic Supplementary Information (ESI)

A visualized means for verifying the charge transfer manner in the WO₃-based type-II heterostructures

Lulu Zhang ^a, Jie Yuan ^a, Cankun Jiang ^a, Yan Zhao ^a, Fan Gao ^a, Xueyan Huang ^a, Zhibin Fang ^b, Ping Liu ^{a, *}

^a Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China

^b State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, PR China.

**Corresponding author. Tel.:* +86-591-22865876; *fax:* +86-591-2286-5876; *E-mail:* <u>liuping@fzu.edu.cn</u>.

Fig. S2. SEM patterns of the samples (a) ZIS, (b) WO_3 and TEM patterns of (c,d) ZIS- WO_3 .

Fig. S3. UV-vis diffuse reflectance spectra of ZIS, WO₃ and ZIS -WO₃.

Fig. S4. Fermi level difference (ΔE_F) between ZIS and WO₃ measured by OCP technique in 0.5M Na₂SO₄ solution with dipping in lactic for 30 min.

Fig. S5. XRD patterns of CdS-WO₃, CdS-WO₃-Lactic-L and CdS-WO₃-Na₂S+Na₂SO₃-L.

Fig. S6. SEM and TEM patterns of the samples (a) (d) CdS-WO₃, (b) (e) CdS-WO₃-Lactic-L and (c) (f) CdS-WO₃-Na₂SO₃-L.

Fig. S7. Transient photocurrent responses of the samples in 0.2M Na₂SO₄ versus of CdS-WO₃-Lactic and CdS-WO₃-Na₂S+Na₂SO₃. Ag/AgCl electrodes at visible light illumination ($\lambda \ge 420$ nm).