Electronic Supplementary Information

Two-dimensional Metal-Organic Framework Accelerating Visible-Light-driven Hydrogen Production

Bingquan Xia, ^a† Jingrun Ran^a† Shuangming Chen,^b Li Song,^b Xuliang Zhang, ^c Liqiang Jing,^c and Shi-Zhang Qiao *^a

- a. School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia E-mail: s.qiao@adelaide.edu.au
- b. National Synchrotron Radiation Laboratory CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
- c. Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center for Catalytic Technology, Heilongjiang University, Harbin, Heilongjiang 150080, China

I. Experimental Section

1.1 Materials synthetic procedures

All chemicals were purchased from Sigma-Aldrich without further purification.

Preparation of Co-MOF: Co-MOF was prepared according to the reported method.¹ Briefly, $Co(NO_3)_2 \cdot 3H_2O(0.119 \text{ g}, 0.5 \text{ mmol}), 1,10$ -phenanthroline (0.091 g, 0.5 mmol), 4,4'-oxybis(benzoic acid) (0.129 g, 0.5 mmol) and triethylamine (0.101 g, 1 mmol), were added into 10 mL H₂O. The suspension was then transferred into a Teflon-lined autoclave and heated to 160 °C and kept for 6 days and then cooled to room temperature at a rate of 5 K h⁻¹. Red crystals were obtained after being washed with water and dried in air.

Preparation of ultrathin Co-MOF layer (CML): 100 mg of the as-prepared Co-MOF was added into 100 mL ethanol and the suspension was then probe-ultrasonicated for 10 hours followed by high-speed centrifugation. Then the as-exfoliated 2D CML in the supernatant was preserved for further use.

Preparation of $Zn_{0.8}Cd_{0.2}S$ (*ZCS*): ZCS was prepared by a precipitation-hydrothermal approach. Briefly, 7.15 g Zn(NO₃)₂·2H₂O and 2.14 g Cd(NO₃)₂·4H₂O were dissolved in 217 mL deionized water and stirred at room temperature for 30 min. After that, 50 mL 0.9 M Na₂S aqueous solution was added dropwise into the above solution followed by stirring for about 2 hours at room temperature. Then the mixture was transferred into a 500 mL Teflon-lined stainless-steel autoclave and maintained at 180 °C for 12 h. The final products were washed with deionized water and ethanol, respectively, for two times to remove any residuals and then dried at 60 °C under vacuum.

Preparation of ZCS/CML hybrids: The ZCS/CML hybrids were fabricated by a self-assembly method using the as-synthesized ZCS and 2D CML ethanol solution. In a typical procedure, 50 mg ZCS nanoparticles were mixed with 2.5, 10.0, 15.0 and 25.0 mL of 2D CML ethanol solution, respectively. Then the suspension was mechanically ground for 5 min. After the ethanol naturally evaporated, the solid left was again ground into powders as the final products. The resulting samples were labelled as ZCS/CML2.5, ZCS/CML10, ZCS/CML15 and ZCS/CML25, respectively.

1.2 Physicochemical characterizations

PXRD was performed on Rigaku MiniFlex 600 X-Ray Diffractometer with Cu K α to characterize the crystal structure. The morphologies and structures of as-prepared samples were observed by TEM (JEOL ARM-200CF with double Cs correctors, 200 kV). UV-Vis diffuse reflectance spectra were collected for the dry-pressed disk samples with an UV-Vis spectrophotometer (UV2600, Shimadzu, Japan) using BaSO₄ as the reflectance standard. The PL spectra were recorded on a RF-5301PC

spectrofluorophotometer (Shimadzu, Japan) at room temperature. Time-resolved PL decay curves were obtained on a FLS1000 fluorescence lifetime spectrophotometer (Edinburgh Instruments, UK). XPS measurement was conducted on a VG ESCALAB 210 XPS spectrometer with Mg K α source. All the binding energies were referenced to the C 1s peak at 284.8 eV. XANES spectra of the samples were collected at the soft X-ray absorption beamline of the Australian Synchrotron (AS). Elemental contents were determined by ICP-OES (Inductively Coupled Plasma-Optical Emission Spectrometer) on Prodigy 7. The steady-state SPV spectra were acquired on a home-built apparatus.

1.3 Photocatalytic H₂ production measurement

The experimental measurements of photocatalytic H₂ production were carried out in a 100 ml Pyrex flask at room temperature and atmospheric pressure. A 300 W Xenon arc lamp with a UV-cutoff filter ($\lambda > 420$ nm) was utilized as a visible-light source to trigger the photocatalytic reaction. Briefly, 20 mg of the as-prepared photocatalyst was added into 80 ml of lactic acid (88 vol%) solution. Before irradiation, the suspension was purged with Argon for 0.5 h to remove any dissolved air and keep the reaction system under anaerobic conditions. Next, 0.2 ml gas was intermittently sampled through the septum, and H₂ content was analyzed by Gas chromatography (Clarus 480, PerkinElmer, USA, TCD, Ar as a carrier gas and 5 Å molecular sieve column). Before the experiment, all glassware was rinsed carefully with de-ionized water.

1.4 Electrochemical and photoelectrochemical measurements

EIS measurements were performed on an electrochemical analyzer (CHI650D instruments) in a standard three-electrode system utilizing the synthesized samples as the working electrodes, Ag/AgCl (saturated KCl) as a reference electrode, and Pt wire as the counter electrode. The EIS were recorded over a range from 1 to $2*10^5$ Hz with an AC amplitude of 0.02 V. 0.5 M Na₂SO₄ aqueous solution was utilized as the electrolyte. Transient photocurrent was measured in the same three-electrode system. A 300 W Xenon light with a UV-cutoff filter ($\lambda > 420$ nm) was applied as the light source. 0.5 M Na₂SO₄ aqueous solution was used as the electrolyte. The working electrodes were synthesized as follows: 0.01 g sample and 0.03 g polyethylene glycol (PEG; molecular weight: 20,000) were ground with 2.0 ml of ethanol to make a slurry. Then the slurry was coated onto a 1.2 cm * 0.8 cm FTO glass electrode by the doctor blade approach. The obtained electrode was dried in an oven and heated at 623 K for 0.5 h under flowing N₂.

II. Supplementary Figures

Figure S1. Crystal Structure of Co-MOF. (Note: Hydrogen atoms bonded to C, N and O are not shown.)

Figure S2. PXRD pattern of Co-MOF.

Figure S3. (a) TEM image and (b) EDS spectrum of 2D CML (scale bar in a: 200 nm).

Figure S4. HAADF-STEM and the corresponding element mapping images of CML.

Figure S5. High-resolution XPS spectra of (a) Co 2p, (b) N 1s, (c) C 1s and (d) O 1s in CML.

III. Supplementary Tables

Table S1. A comparison of the photocatalytic H ₂ -production activities of the representative noble-
metal-free $Zn_xCd_{1-x}S$ or CdS based systems

Photocatalyst	Co-catalyst	Enhancement factor	H ₂ production rate (μmol h ⁻¹ g ⁻¹)	Light/ dose	Ref.
Zn _{0.8} Cd _{0.2} S/CML15	CML	4.92	18100	$\lambda > 420 \text{ nm/}$ 20 mg	This work
$Zn_{1-x}Cd_xS/10$ wt.% α -Fe ₂ O ₃	α-Fe ₂ O ₃	24	540	$\lambda > 420 \text{ nm}/$ 100 mg	[2]
P-ZnCdS/CdS-VS ₂	VS_2	7.6	192	$\lambda > 400 \text{ nm}/$ 5 mg	[3]
0.5 wt% Fe _{0.3} Pt _{0.7} -ZnCdS	$Fe_{0.3}Pt_{0.7}$	3.06	2230	$\begin{array}{c} \lambda > 400 \text{ nm} / \\ 100 \text{ mg} \end{array}$	[4]
0.5 wt% Pt-ZnCdS	Pt	2.20	1630	$\lambda > 420 \text{ nm}/$ 100 mg	[4]
CdS/CNT	CNT	2.23	1770	$\lambda > 420 \text{ nm}/$ 20 mg	[5]
CdS/Graphene	Graphene	4.87	56000	$\frac{\lambda > 420 \text{ nm}}{20 \text{ mg}}$	[6]
CdS/N-Graphene	N-Graphene	5.25	1050	$\lambda > 420 \text{ nm}/$ 200 mg	[7]
CdS/DWNT/s-MoS ₂	DWNT/s- MoS ₂	N/A	5730	$\lambda > 420 \text{ nm}/$ 20 mg	[8]

 Table S2. Fitted results of resistance obtained from electrochemical impedance spectra

Resistance	ZCS	ZCS/CML15
R _s (ohm)	47.15	43.10
R _t (ohm)	3818	3186

IV. Supplementary references

- 1 Z. B. Han, X. N. Cheng and X. M. Chen, *Cryst. Growth Des.*, 2005, 5, 695–700.
- 2 M. Imran, A. Bin Yousaf, P. Kasak, A. Zeb and S. J. Zaidi, J. Catal., 2017, 353, 81–88.
- 3 F.-T. Liu, K. Li, T. Li, Z.-X. Wang, Y.-Z. Lin and Y. Zhang, *Catal. Sci. Technol.*, 2018, 9, 583–587.
- D. Shu, H. Wang, Y. Wang, Y. Li, X. Liu, X. Chen, X. Peng, X. Wang, P. Ruterana and H. Wang, *Int. J. Hydrogen Energy*, 2017, 42, 20888–20894.
- 5 J. Chen, Q. Chen, P. Guo, M. Liu, X. Wang, L. Guo, M. Wang and K. Zhang, *Int. J. Hydrogen Energy*, 2013, **38**, 13091–13096.
- Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang, H. Yan and J. R. Gong, J. Am. Chem. Soc., 2011, 133, 10878–10884.
- L. Jia, D.-H. Wang, Y.-X. Huang, A.-W. Xu and H.-Q. Yu, J. Phys. Chem. C, 2011, 115, 11466– 11473.
- M. Meng-Jung Li, P. Mills, S. M. Fairclough, A. Robertson, Y.-K. Peng, J. Warner, C. Nie, E.
 Flahaut and S. C. Edman Tsang, *Chem. Commun.*, 2016, 52, 13596–13599.