Supplementary Information

Gold nanoclusters for controlled insulin release and glucose regulation in diabetes

Yujie Zhang ^a, Mingxin Wu ^a, Wubin Dai ^b, Yingping Li ^c, Xin Wang ^a, Di Tan ^a, Zhilu Yang ^d, Sheng Liu ^a, Longjian Xue ^a, Yifeng Lei ^{a *}

^a The Institute of Technological Sciences & School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

^bSchool of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China

^c School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China

^d School of Material Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China

E-mail address: yifenglei@whu.edu.cn (Y.F. Lei)

Fig. S1 Preparation process of gluconic acid modified bovine insulin (G-Insulin).

Fig. S2 Gluconic acid modification of insulin (G-Insulin) did not change the structure and bioactivity of pure insulin. (a) CD spectra of pure insulin and G-Insulin. (b) Compare of bioactivity (glucose regulation) of pure insulin and G-Insulin in healthy mice. Drug was intraperitoneally (i.p.) injected into mice for 30 min, then glucose was i.p. injected (t = 0), and the blood glucose of mice was monitored thereafter.

Fig. S3 The induction of type 1 diabetic mouse model using streptozocin (STZ). (a) The glucose changes during the induction of type 1 diabetic mice. The syringes indicated the days of STZ injection. (b) Images of mice cages before and at 10 days after STZ induction.

Fig. S4 FTIR high-resolution spectra. (a) During the synthesis of GNC-PBA-Ins complex. (b). During the synthesis of GNC-FPBA-Ins complex.

Fig. S5 XPS high-resolution spectra of F1s during the synthesis of GNC-FPBA-Ins complex.

Fig. S6 Insulin release from gold nanoclusters over time. (a) Relative amount of insulin release (%) from GNC-PBA-Ins complex. (b) Relative amount of insulin release from GNC-FPBA-Ins complex.

	Size by TEM (nm)	Hydrodynamic size by DLS (nm)	Polydispersity index (PDI)
GNCs	2.8 ± 0.5	5.2 ± 1.7	0.111 ± 0.008
GNC-PBA-Ins	11.1 ± 2.0	131.3 ± 8.4	0.214 ± 0.108
GNC-FPBA-Ins	14.0 ± 3.2	179.4 ± 9.7	0.282 ± 0.071

 Table S1 Characteristics of gold nanoclusters by TEM and DLS.

	Loading capacity of insulin	References
GNC-PBA-Ins	848 µmol insulin per g GNCs	
GNC-FPBA-Ins	951 µmol insulin per g GNCs	
MSNs	64 µmol insulin per g MSNs	1
	7.9 wt % (13.6 µmol insulin per g chitosan-coated particles)	2
Nano-Network	11.4 wt % (19.6 µmol insulin per g alginate-coated	2
	particles)	2
Nanocapsules	44.6 wt% (76.8 μmol insulin per g particles)	3

Table S2 Drug loading capacity of different nanocarriers.

Supplementary References

- 1 Y. Zhao, B. G. Trewyn, Slowing, II and V. S. Lin, J. Am. Chem. Soc., 2009, 131, 8398-8400.
- 2 Z. Gu, A. A. Aimetti, Q. Wang, T. T. Dang, Y. L. Zhang, O. Veiseh, H. Cheng, R. S. Langer and D. G. Anderson, *ACS Nano*, 2013, 7, 4194-4201.
- 3 Z. Gu, T. T. Dang, M. Ma, B. C. Tang, H. Cheng, S. Jiang, Y. Dong, Y. Zhang and D. G. Anderson, *ACS Nano*, 2013, **7**, 6758-6766.