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Quantum-chemical computations 

First-principles (ab initio) quantum-chemical simulations are performed within the linear combination 

of atomic orbitals (LCAO) approximation and partially periodic boundary conditions, using advanced 

hybrid functionals of the density-functional-theory (DFT). The CRYSTAL code (v.14) [1] was used 

to calculate dipole moments for stoichiometric isolated slabs of BaTiO3 and SrTiO3. Calculations have 

been performed with PBE0 hybrid DFT-HF exchange-correlation functional [2] combining the 

Perdew–Burke-Ernzerhof (PBE) exchange functional with 25% of the Hartree-Fock (HF) exchange 

and the PBE correlation functional, which already proved reliable for piezoelectric properties. 

[3][4][5]. 

The inner core orbitals of Ba, Sr and Ti atoms were described using Hay and Wadt effective small-

core pseudopotentials (ECP) [6][7][8], the outer core 5s25p66s2 sub-valence and valence electrons for 

Ba, 4s24p65s2 electrons for Sr and 3s23p63d24s2 for Ti are calculated self-consistently. The oxygen 

atoms were described by an all-electron basis set. The basis sets for Ba, Sr and Ti were reused from 

Ref. [9], where they were previously optimized for BaTiO3 and SrTiO3 crystals, whereas the basis set 

for oxygen was adopted from Ref. [10].  

Our computational set up has been calibrated in terms of accuracy and computational time. The cut-

off thresholds governing the truncation of infinite coulomb and exchange lattice sums in the two-

electron integral evaluation have been set to 8, 8, 8, 8, 16, and a regular Monkorst-Pack mesh of points 

in reciprocal space has been used, whose shrinking factor has been set to 12, while the convergence 

threshold on total energy was set to 10-10 Ha (Hartree) for self-consistent field (SCF) calculations and 

geometry optimization. These parameters ensure converged results.  

A partially periodic isolated slab structure was cut from the prototype 3D BaTiO3/SrTiO3 cubic crystal 

(SG 221, BaTiO3: a=3.993 Å, SrTiO3: a=3.901 Å) along <100> crystallographic planes, with AO 

(where A = Ba or Sr) and TiO2 terminations [11]. We have calculated the dipole moments for BaTiO3 

and SrTiO3 stoichiometric slabs of different thicknesses specified in Table 2. 

Table 2. The values of the dipole moment perpendicular to the slab (along z-axis) depending on number of unit cells 

along z-axis in the initial structure (thickness of slab), n — number of unit cells along z-axis; a=b — calculated in-plane 

lattice constants (perpendicular to z-axis) 

 BaTiO3 SrTiO3 

n a=b, Å Dip. moment, D a=b, Å Dip. moment, D 

3 3.947 2.0338 3.866 1.3177 

4 3.958 2.0553 3.874 1.3285 
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5 3.965 2.0620 3.879 1.3306 

6 3.970 2.0649 3.883 1.3291 

 

P3M implementation 

Here a brief summary of the treatment of long-ranged dipolar interaction in the NPT self-assembly 

simulations is presented for reference.  The dipole-dipole interaction [12] between two point dipoles 

𝝁𝑖 and 𝝁𝑗 placed at 𝒓𝒊 and 𝒓𝒋 and separated by a distance 𝑟𝑖𝑗 = |𝐫𝑖 − 𝐫𝑗| 

𝛽𝑈𝑑𝑑(𝝁𝒊, 𝝁𝒋, 𝒓𝒊𝒋) = 𝜆(�̂�𝑖 ∙ 𝛁𝒓𝑖
) (�̂�𝑗 ∙ 𝛁𝒓𝑗

)
1

|𝒓𝑖𝑗|
= −

𝜆

𝑟𝑖𝑗
3 [3(�̂�𝑖 ∙ �̂�𝑖𝑗)(�̂�𝑗 ∙ �̂�𝑖𝑗) − �̂�𝑖 ∙ �̂�𝑗] 

The total energy of a system of N point dipoles {𝛍𝑖}𝑖=1
𝑁  with positions {𝐫𝑖}𝑖=1

𝑁  in a periodic simulation 

box defined by edge vectors 𝐚 = {𝐚𝟏 𝐚𝟐 𝐚𝟑} (as columns)  

𝛽𝑈 =
1

2
∑ ∑ ∑ 𝛽𝑈𝑑𝑑(�̂�𝑖 , �̂�𝑗 , 𝐫𝑖𝑗 + 𝐋𝐧)

𝑁

𝑗=1

𝑁

𝑖=1

′

𝐧
 

where 𝐋 ≡ diag(|𝐚𝟏|, |𝐚𝟐|, |𝐚𝟑|) and the sum runs over the periodic images of the system indexed by 

𝐧 = (𝑛1, 𝑛2, 𝑛3) with 𝑛𝛽 ∈ ℤ and the prime indicates that the term with 𝑖 = 𝑗 is omitted for 𝐧 = 0. 

The dipolar sum is conditionally convergent [13], using Ewald decomposition the long-ranged dipolar 

interaction is split into a short-range component 𝑈(𝑟), which is evaluated in real space, and a long-

range part 𝑈(𝑘), which is calculated in Fourier space. Due to its fast decay the former can be treated 

efficiently within a conventional MD framework. The real-space part of the energy, force and torque 

on a dipole 𝑖 are accordingly [14][15][16] 

𝑈(𝑟) =
1

2
∑ ∑ ∑{(𝛍𝑖 ∙ 𝛍𝑗)𝐵(|𝒓𝑖𝑗 + 𝐧|) − [𝛍𝑖 ∙ (𝐫𝑖𝑗 + 𝐧)][𝛍𝑗 ∙ (𝐫𝑖𝑗 + 𝐧)]𝐶(|𝐫𝑖𝑗 + 𝐧|)}

𝑁

𝑗=1

𝑁

𝑖=1

′

𝐧
 

𝐅𝒊𝒋
(𝒓)

(𝒓𝒊𝒋) = {[(𝛍i ∙ 𝛍j)𝐫ij + 𝛍i(𝛍j ∙ 𝐫ij) + (𝛍i ∙ 𝐫ij)𝛍j]𝐶(𝑟𝑖𝑗) − (𝛍i ∙ 𝐫ij)(𝛍j ∙ 𝐫ij)𝐷(𝑟𝑖𝑗)𝐫𝐢𝐣} 

𝛕𝒊𝒋
(𝒓)

(𝒓𝒊𝒋) = − ∑ ∑(𝛍i × 𝛍j)𝐵(𝑟𝑖𝑗) − (𝛍i × 𝐫ij)(𝛍j ∙ 𝐫ij)𝐶(𝑟𝑖𝑗)

𝑁

𝑗=1

′

𝐧
 

where the real-space coefficients 

𝐵(𝑟) =
1

𝑟3
[erfc(𝛼𝑟) +

2𝛼𝑟

√𝜋
𝑒−𝛼2𝑟2

] 

𝐶(𝑟) =
1

𝑟5
[3 erfc(𝛼𝑟) +

2𝛼𝑟

√𝜋
(3 + 2𝛼2𝑟2)𝑒−𝛼2𝑟2

] =
1

𝑟2
[3𝐵(𝑟) +

4𝛼3

√𝜋
𝑒−𝛼2𝑟2

] 

𝐷(𝑟) =
1

𝑟7
[15 erfc(𝛼𝑟) +

2𝛼𝑟

√𝜋
(15 + 10𝛼2𝑟2 + 4𝛼4𝑟4)𝑒−𝛼2𝑟2

] =
1

𝑟2
[5𝐶(𝑟) +

8𝛼5

√𝜋
𝑒−𝛼2𝑟2

] 

and the Ewald splitting parameter 𝛼 determines their effective range.  



In turn, the long-range contribution is short-ranged in Fourier space and is summed there with metallic 

boundary conditions [15][17] 

 𝑈(𝑘) =
1

2𝑉
∑ |�̂�(𝒌) ∙ 𝑖𝐤|2

𝐤≠0 �̂�𝐤 −
2𝛼3

3√𝜋
∑ 𝛍𝑖

2𝑁
𝑖=1  (S1) 

where 𝑉 = det 𝒂 is the volume of the simulation box, the wave vector 𝐤 ≡ {2𝜋𝐦𝑇𝐚−1: 𝐦 ∈ ℤ𝟑} and 

𝐚−1 =  {𝒂𝟏
∗ 𝒂𝟐

∗ 𝒂𝟑
∗ }T having reciprocal vectors as rows; �̂�(𝐤) is the Fourier transform of the 

periodic dipole density distribution 𝛒(𝐫) = ∑ 𝛍𝑖
𝑁
𝑖=1 𝛿(𝐫 − 𝐫𝑖) 

�̂�(𝐤) = FT[𝛒](𝐤) = ∑ 𝛍𝑖

𝑁

𝑖=1

𝑒−𝑖𝐤⋅𝐫𝑖 

and the Green (influence) function 

�̂�(𝐤) = FT[erf(𝛼𝑟) 𝑟−1](𝐤) =
4𝜋

|𝐤|2
𝑒−|𝐤|2/4𝛼2

 

In the particle-particle-particle-mesh (P3M) Ewald method [18] the fast Fourier transform (FFT) is 

used to accelerate the calculation of the k-space component, which is the optimal approach for systems 

of moderate size (300<N<105 particles) [17][19]. 

Hence, the simulation domain is discretized by a 𝐍 ≡ diag(𝑁1, 𝑁2, 𝑁3) mesh with spacing 𝐇 ≡

diag(ℎ1, ℎ2, ℎ3) = 𝐍−1𝐋, where the mesh points are identified by lattice vectors 𝐫𝒎 ≡ {(𝐚𝐍−1)𝐧: 𝐧 ∈

ℤ3, 0 ≤ 𝑛𝛽 < 𝑁𝛽}. 

The point dipoles are mapped onto a mesh-based dipole density distribution by p-order assignment 

functions 𝑊(𝑝), which distribute the dipole onto the nearest mesh points 

𝛒𝐫𝑚
=

1

|𝐇|
∑ 𝛍𝑖𝑊(𝑝)(𝐫𝒎 − 𝐫𝒊)

𝑁

𝑖=1

 

where 𝐫𝒊 is the coordinate of particle 𝑖; 𝑊(𝑝)(𝐫) = 𝑤(𝑝)(𝑠1)𝑤(𝑝)(𝑠2)𝑤(𝑝)(𝑠3) and 𝑤(𝑝) are shifted B-

splines over the nearest p mesh points (per coordinate direction) over the interval [−0.5𝑝, 0.5𝑝], 𝐬 =

𝐍𝐚−1𝐫 are scaled coordinates 𝑠𝛽 ∈ [0, 𝑁𝛽] along directions 𝐚𝛽 [18][20][17][19]. The Fourier 

coefficients of the mesh-based dipole density are calculated using the FFT 

�̂�𝐤n
= FFT{𝛒𝐫𝑚

}(𝐤n) =
1

𝑉
∑ 𝑒𝑖𝐤𝐧⋅𝐫𝑚𝛒𝐫𝐦

𝐫𝑚

 

over the set of wave vectors in one Brillouin zone 𝐤n ≡ {2𝜋𝐧T𝐚−𝟏: 𝐧 ∈ ℤ𝟑, |𝑛𝛽| < 0.5𝑁𝛽} 

[17][19][20]. The k-space part of the total energy of dipole-dipole interaction follows from Eq. (S1) 

where the continuous variables have been replaced by their discreet analogues: 

𝑈(𝑘) =
1

2𝑉
∑ |�̂�𝐤n

∙ 𝑖𝐤𝐧|
2

�̂�𝐤𝐧

′

𝐤n≠0

−
2𝛼3

3√𝜋
∑ 𝛍𝑖

2

𝑁

𝑖=1

 

The potential is computed at each mesh point 𝐫𝑚 by  



𝜙𝐫𝑚

(𝑘)
=

1

𝑉
FFT−1{�̂�𝐤𝑛

}(𝐫𝑚) 

where �̂�𝐤𝑛
= �̂�𝐤n

�̂�𝐤n

′ . The reciprocal electrostatic field at each mesh point 𝐫𝑚: 𝐄𝐫𝑚

(𝑘)
=

FFT𝐤𝐧≠0
−1 {�̂�𝐤n

(𝑘)
}(𝐫𝑚) is calculated by differentiating the potential in Fourier space �̂�𝐤n

(𝑘)
=

𝑖𝐤𝐧[�̂�𝐤n
∙ 𝑖𝐤𝐧]�̂�𝐤𝐧

′  using the gradient operator 𝑖𝐤𝐧 [17][18][19]. The back interpolation of mesh-based 

quantities onto particle positions 𝐫𝒊 is achieved using the assignment functions 𝑊(𝑝) [18] 

𝑋(𝑘)(𝐫𝒊) = ∑ 𝑋𝐫𝑚

(𝑘)
𝑊(𝑝)(𝐫𝒎 − 𝐫𝒊)

𝐫𝑚

 

The k-space torque on dipole i is computed from the electric field obtained at the position of the dipole 

𝛕𝒊
(𝑘)

= 𝛍𝑖 × 𝐄(𝑘)(𝐫𝒊) 

Likewise, the k-space force on each dipole [17] 

𝐅𝒊
(𝑘)

= ∑ 𝑊(𝐫𝑚 − 𝒓𝒊){�̂�𝑖,𝑥FFT𝐤𝐧≠0
−1 [�̂�𝐤𝑛,𝑥𝑖𝐤𝐧] + �̂�𝑖,𝑦FFT𝐤𝐧≠0

−1 [�̂�𝐤𝑛,𝑦𝑖𝐤𝐧]

𝐫𝑚

+ �̂�𝑖,𝑧FFT𝐤𝐧≠0
−1 [�̂�𝐤𝑛,𝑧𝑖𝐤𝐧]}(𝐫𝐩) 

The lattice Green function �̂�𝐤𝐧

′  is introduced in an optimized form, which minimizes the discretization 

errors [17][19] 

�̂�𝐤𝐧

′ =
∑ [𝑖𝐤𝐧 ∙ 𝑖𝐤𝐦]𝑠�̂�𝐤𝐦

2 �̂�(𝐤𝐦)𝐦

[𝑖𝐤𝐧]2𝑠(∑ �̂�𝐤𝐦

2
𝐦 )

2  

where 𝐤𝐦 ≡ {𝐤𝐧 + 2𝜋(𝐍𝐦)𝑇𝐚−𝟏: 𝐦 ∈ ℤ𝟑} (the sum over 𝐦 converges quickly) [20], �̂�𝐤 =
1

|𝐇|
�̂�𝐤 

and �̂�𝐤 = ∫ 𝑒𝑖𝐤⋅𝐫𝑊(𝐫) 𝑑3𝐫
𝑉

= |𝐇| [∏ sinc (
𝜋𝑛𝛽

𝑁𝛽
)𝛽 ]

𝑝

 is the Fourier transform of the assignment 

function. The exponent S = 3 is used for the force and stress calculation and S = 2 - for the energy, 

electric field and torque. In the case of changeable simulation box size/shape the lattice Green function 

is recomputed at each time step. 

Virial stress. In NPT simulations the volume of the simulation box must change in response to the 

imbalance of the internal/external stress, which has a direct and reciprocal terms due to the k-space 

splitting of the electric field contributions. For the direct part of the virial stress increment based on a 

short-ranged pair-wise potential a standard expression is suitable [15][21] 

∆Π𝛼𝛽
(𝑟)

=
1

2𝑉
∑ ∑ ∑(𝐫𝑖𝑗𝐧)

𝛼
(𝐅𝑖𝑗𝐧

(𝒓)
)

𝛽

𝑁

𝑗=1

𝑁

𝑖=1

′

𝐧∈ℤ3

 

The reciprocal contribution is developed following the approach of Andersen [22], Smith [14], 

Parrinello and Rahman [23], Nose and Klein [24] where the k-space term Π𝛼𝛽
(𝑘)

 is deduced from the 

energy scaling relation [24][25] 



 −
𝜕𝑈(𝑘)({𝑠𝑖},𝒂)

𝜕𝑎𝛼𝛽
= 𝑉 ∑ Π𝛼𝛾

(𝑘)
𝑎𝛽𝛾

−1
𝛾  (S2) 

Here,  𝑈(𝑘)({𝑠𝑖}, 𝒂) is the reciprocal part of the potential energy of the simulation cell. Using Eq. (S1) 

and geometric relations 
𝜕𝑉

𝜕𝑎𝛼𝛽
= 𝑉(𝒂−1)𝛽𝛼 (via Jacobi’s formula), 

𝜕𝑘𝛾

𝜕𝑎𝛼𝛽
= −𝑘𝛼𝑎𝛽𝛾

−1 the application of 

Eq. (S2) to the k-space part of the potential energy produces the reciprocal virial as the sum 𝚷(𝒌) =

𝚷(𝟎) + 𝚷(𝟏) of a monopolar contribution 

Π𝛼𝛽
(0)

=
1

2𝑉2
∑ [𝛿𝛼𝛽 − 2(𝐤𝐧)𝛼(𝐤𝐧)𝛽 (

1

𝑘𝑛
2

+
1

4𝜂2
)] |𝑖𝐤𝐧 ∙ �̂�𝐤n

|
2

�̂�𝐤𝐧

′

𝐤𝐧≠0

 

which originates from the 𝒂-dependence of the volume V and of the kernel [24][25][26], and a dipolar 

one 

Π𝛼𝛽
(1)

=
1

𝑉2
∑ (𝐤𝐧)𝛼(�̂�𝐤n

)
𝛽

(𝐤𝐧 ∙ �̂�−𝐤n
)�̂�𝐤𝐧

′

𝐤𝐧≠0

 

Which comes from the 𝒂-dependence of the kernel and is similar to that reported before [15][27], but 

where the Fourier mesh vectors, dipole density and the influence function have been replaced by their 

discreet analogues. 

We have implemented the k-space energy, force, torque and virial stress calculations for the dipolar 

P3M within the Highly Optimized Object-Oriented Many particle Dynamics (HOOMD-blue) 

framework, which is a general-purpose particle simulation toolkit optimized for performance on 

NVIDIA GPUs [28][29][30]. 

Error estimates and validation. A priori RMS error estimates for P3M dipolar force within randomly 

distributed ensembles of dipoles were previously derived by Cerda et al. [17][19] as a sum of direct 

and reciprocal contributions  

(∆𝐹)2 = (∆𝐹(𝑟))
2

+ (∆𝐹(𝑘))
2
 

where 

(∆𝐹(𝑟))
2

=
𝑀4

𝑁

1

𝑉𝛼4𝑟𝑐
9 (

13

6
𝐶𝑐

2 +
2

15
𝐷𝑐

2 −
13

15
𝐶𝑐𝐷𝑐) 𝑒−2𝛼2𝑟𝑐

2
 

(∆𝐹(𝑘))
2

=
𝑀4

𝑁

𝛼

9𝑉2
∑ {∑|𝐤𝐦|6�̂�2(𝐤𝐦)

𝐦

−
[∑ (𝐤𝐧 ∙ 𝐤𝐦)3�̂�𝐤𝐦

2 �̂�(𝐤𝐦)𝐦 ]
2

𝐤𝐧
6(∑ �̂�𝐤𝐦

2
𝐦 )

2 }

𝐤n≠0

 

𝐶𝑐 = 4𝛼4𝑟𝑐
4 + 6𝛼2𝑟𝑐

2 + 3 

𝐷𝑐 = 8𝛼6𝑟𝑐
6 + 20𝛼4𝑟𝑐

4 + 30𝛼2𝑟𝑐
2 + 15 

These estimates are used to guide the Ewald splitting parameter 𝛼 towards the maximum accuracy 

(lowest error) of the scheme within an iterative procedure. The error ∆𝐹 calculations for a system of 

100 unit dipoles, which are randomly distributed within a simulation cube of length L=10 and using 



a real-space cut-off radius 𝑟𝑐 = 4, i.e. a system identical to the one studied by Cerda et al. [17], is 

shown in Fig. S1 and fairly accurately reproduces their results.  

 

Fig. S1. Calculated RMS error ∆𝐹 for dipolar forces in a system of randomly distributed 100 unit dipoles as a function of 

Ewald splitting parameter 𝛼. The dashed line shows the real space contribution ∆𝐹(𝑟), the solid line indicates the results 

of Cerda et al. [17]. 

The correct calculation of potential energies, forces, torques and virial stress within our 

implementation of P3M has been verified by series of independent simulations using dipolar Ewald 

summation [15] with the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) 

[31] for an identical system. The results agree within the expected precision. 

Self-assembly simulations 

Excluded volume interactions of cubic nanocrystals were modelled using discrete element method 

(DEM). Simulations of osmotic self-assembly of N=15 625 dipolar cubes were carried out using 

DEM/P3M dynamics in a periodic simulation box under the isothermal-isobaric NPT ensemble using 

Martyna-Tobias-Klein hybrid scheme (barostat-thermostat) [32] to produce solid morphologies for 

characterization. The nominal cube edge length is 𝜎∗ = 1, the simulation time unit is �̃� = √𝛽𝑚𝜎2, 

where 𝛽 =
1

𝑘𝑇
. The starting configurations are disordered low density gas-like states initialized with 

pseudorandom positions and orientations and initial velocities sampled from the Maxwellian 

distribution at nominal temperature 𝑇∗ = 1. After a brief thermalization the compression runs 

simulate the entire self-assembly process from a dilute suspension to a high-density state. We start 

with a pre-compression (2·105 timesteps, ∆𝑡 = 0.0005�̃�) to impose the initial confinement with target 

density 𝜙 ≈ 0.45 and facilitate nucleation, then the system is compressed 0.45 < 𝜙 → 1 for 2·106 

timesteps by slowly ramping up the pressure and allowing the system to relax for 104 timesteps after 

each incremental pressure jump. This is sufficient to form an ordered state of simple cubes in accord 

with the experiments by Mimura and Kato. After equilibrating the solid phase at target pressure for at 

least 5·105 timesteps, the production run proceeds for 5·105 timesteps to collect data and measure the 

statistical descriptors. The simulations of dipolar cubes are performed by assigning 〈001〉 dipoles 

(pointing towards cube faces) to the nanocubes with dipolar interaction strength 𝜆 = 𝛽𝑈𝑑𝑑 = 0 ÷ 20 

varying in the indicated range. The isotropy of the stress tensor is verified in each run. The state data 

is collected from at least 4 to 8 independent trajectories for each state point, uncertainty is reported as 



the standard deviation. Since the DEM cubes are slightly larger than their hard cores due to the 

presence of elastic layer, we rescale the volume and density by an effective edge length (𝜎𝑒𝑓𝑓
∗ ≈ 1.1) 

determined as the minimum distance of approach from the pair probability distribution function 𝑔2(𝑟), 

which quantifies the effective excluded volume. The simulations were performed with a HOOMD-

blue code maintained by the University of Michigan [28][29], which was modified as described above. 

All calculations were run on the LASC cluster of the Institute of Solid State Physics of the University 

of Latvia. 

Data analysis 

The degree of global orientational order is measured using the cubatic order parameter 𝑃4 ∈ [0,1], 
which is sensitive to the 4-fold symmetries of the cubic lattice [33][34]: 

𝑃4 =
1

14
〈35(𝐮𝑖𝑗 ∙ 𝐧)

4
− 30(𝐮𝑖𝑗 ∙ 𝐧)

2
+ 3〉 

Here 𝐮𝑖𝑗 is a set of unit vectors along a relevant particle axes and 𝐧 is a unit director, which maximizes 

𝑃4, and is calculated by sampling from a sufficiently large trial set [34]. The averaging 〈… 〉 is 

performed over all 15625 cubes in the ensemble. The positional extent of the mesoscale cubatic 

correlations is assessed by orientational correlation function 𝐺4(𝑟) ∈ [0,1], which quantifies the 

mutual alignment of particles as a function of their separation distance 𝑟 [34] favoring face-to-face 

ordering of the cubic lattice: 𝐺4(𝑟) =
3

14
〈35[𝐮𝑖𝛼(0) ∙ 𝐮𝑗𝛼(𝑟)]

4
− 30[𝐮𝑖𝛼(0) ∙ 𝐮𝑗𝛼(𝑟)]

2
+ 3〉, where 

〈… 〉 denotes the ensemble average over all particle pairs (𝑖, 𝑗) and cube face normals 𝛼. 

The degree of crystalline order in the generated solids is identified with the help of diffraction patterns 

and polyhedral template matching following literature procedures [35][36][37]. The virtual SAD 

patterns are calculated along the cubatic director 𝐧 of P4, which identifies a high symmetry axis. 

Polyhedral template matching (PTM) [36][35] is used to assign the crystalline structure by graph-

based matching of the convex hull formed by the local neighborhood to a set of predefined reference 

templates. The spectrum of the root-mean-square deviation (𝑅𝑀𝑆𝐷 ∈ [0,1]) of the structure from a 

set of standard reference lattices is a measure of the local particle environment. The PTM has this 

advantage that it characterizes order on a local scale and can be used to identify locally ordered 

regions. To calculate local packing fraction Φ𝑙𝑜𝑐 distribution in the consolidated assemblies of 

nanocubes the indicator function 𝐼Φ, which is equal to 1 within the solid phase Χ and 0 in the porous 

space Ω, is defined  

𝐼Φ(𝐫) = {
0 𝐫 ∈ Ω
1 𝐫 ∈ X

 

The indicator function 𝐼Φ is mapped onto a fine regular mesh spanning the assembly and the packing 

topography is generated by coarse graining the meshed distribution Φ𝑙𝑜𝑐(𝐫) =
1

𝑉
∫ 𝐼Φ(𝐱)𝑑𝐱

V(𝐱)
 

respecting the periodicity of the system, where V(𝐱)~𝜎3 denotes a spherical volume centered at 𝐱. 

The locally orientationally ordered clusters in assemblies without long-range cubatic order are 

identified using local cubatic order parameter 𝑃4
𝑙𝑜𝑐, which is defined similar to Liu et al. [38]. To that 

end the simulation domain is discretized by a 𝐍 ≡ diag(𝑁1, 𝑁2, 𝑁3) mesh, where the mesh points are 

identified by lattice vectors 𝐫𝒎 ≡ {(𝐚𝐍−1)𝐧: 𝐧 ∈ ℤ3, 0 ≤ 𝑛𝛽 < 𝑁𝛽}. Then 𝑃4
𝑙𝑜𝑐(𝐫𝒎) =

1

14
〈35(𝐮𝑖𝑗 ∙



𝐧)
4

− 30(𝐮𝑖𝑗 ∙ 𝐧)
2

+ 3〉𝑉𝜀(𝐫𝒎), where the subscript indicates that the ensemble average is obtained 

over the particles with centroids within a volume 𝑉𝜀(𝐫𝒎) in the vicinity of mesh point 𝐫𝒎 as a measure 

of the local neighborhood. The volume 𝑉𝜀(𝐫𝒎) encompasses the first two coordination spheres of a 

perfect cubic lattice calculated from the pair-probability distribution 𝑔2(𝑟). Small ordered cubic 

packing can be reliably identified in the absence of global order inspecting the locality of packing 

fraction and local cubatic order. To emulate the surface morphologies the produced ensembles are 

periodically replicated from the final frames of self-assembly simulations and sliced along high-

symmetry axes – the cubatic directors. To calculate the topology of the pair probability distribution 

[39] and the potential of mean force and torque (PMFT) [40][41] at varying levels of confinement an 

additional series of NVT simulations are performed branching from the NPT compression trajectories 

after reaching the desired density. After equilibrating for 106 timesteps the production runs for 106 

timesteps. The relative displacements of all pairs of particles within a spherical cutoff are recorded 

and binned using a regular mesh 𝐫𝒎 with desired resolution in the coordinate system of the first particle 

(the possible orientations of the second (probe) particle are implicitly integrated, which allows a direct 

visualization). The spatial distribution of the normalized frequency of occupancy of the bins produces 

the topology of 𝑔2(𝐫𝒎) [39], whereas its logarithm yields the PMFT [40][41]. The simulated 

trajectories were inspected using the Open Visualization Tool (OVITO) [35]. The statistical 

descriptors were measured from the calculated trajectories as described above, ParaView [42] - an 

open-source, multi-platform data analysis and visualization suite – was used to inspect the produced 

topological data.  
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