Supporting Information

Quasi-layer Co₂P-polarized Cu₃P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting

Liangbin Liu#, Lei Ge#, Yuyang Sun, Binbin Jiang, Yafei Cheng, Lai Xu*, Fan Liao,

Zhenhui Kang*, Mingwang Shao*

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China

* Correspondence to: xulai15@suda.edu.cn (L. Xu); zhkang@suda.edu.cn (Z. H.

Kang); mwshao@suda.edu.cn (M. W. Shao).

Figure S1. The supercell slabs of Cu_3P , Co_2P and $Cu_3P \cdot 0.75Co_2P$. The nanocomposite was constructed by connecting the (001) surface of Cu_3P , and (001) surface of Co_2P .

Figure S2. The configuration of H atom adsorption from top and side view of Cu_3P , Co_2P and $Cu_3P \cdot 0.75Co_2P$.

Figure S3. The configuration of O atom adsorption from top and side view of Cu_3P , Co_2P and $Cu_3P \cdot 0.75Co_2P$.

Figure S4. The configuration of OH atom adsorption from top and side view of Cu_3P , Co_2P and $Cu_3P \cdot 0.75Co_2P$.

Figure S5. XRD patterns of (A) $Cu_3P \cdot 1.5Co_2P$, (B) $Cu_3P \cdot 0.375Co_2P$, (C) Cu_3P and (D) Co_2P on NF.

Figure S6. SEM images of (a) Cu₃P·1.5Co₂P (b) Cu₃P·0.375Co₂P.

Figure S7. (A) and (B) are HRTEM images of numerous interfaces between Co_2P and Cu_3P .

8

Figure S8. EDS mapping of the $Cu_3P \cdot 0.75Co_2P$ formed on the Ni foam.

Figure S9. The LSV curves of Cu_3P/CC , Co_2P/CC and $Cu_3P \cdot 0.75Co_2P/CC$ measured in 1.0 M KOH solution.

Figure S10. Water splitting in 1.0 M KOH for Pt/C and the IrO₂ electrodes in a twoelectrode configuration.

Figure S11. Nyquist plots of Cu₃P-Co₂P, Cu₃P and Co₂P in 1.0 M KOH at an applied potential of (A) and (B) HER at -0.125 V vs. RHE, and (C) and (D) OER at 1.437 V vs. RHE.

The cyclic voltammetry was tested of the Cu₃P·1.5Co₂P, Cu₃P·0.75Co₂P, Cu₃P·0.375Co₂P at the scan rates of 5-25 mV s⁻¹ in Figures S3A, S3B and S3C. The C_{d1} was measured to evaluate the ECSA of each catalyst for HER (Figure S3D). The Cu₃P·0.75Co₂P possessed a 0.1598 mF cm⁻² of ECSA, which was much larger than that of Cu₃P·0.375Co₂P (C_{d1} = 0.1078 mF cm⁻²) and the Cu₃P·1.5Co₂P (C_{d1} = 0.1376 mF cm⁻²). Figures S4A, S4B and S4C, shown the cyclic voltammetry of the Cu₃P·0.75Co₂P, Cu₃P and the Co₂P at the scan rates of 5-25 mV s⁻¹. The corresponding C_{d1} (Figure S4D) of the Cu₃P and the Co₂P are 0.0830 mF cm⁻² and 0.0984 mF cm⁻², which are much smaller than the Cu₃P·0.75Co₂P. All of the ECSA information have illustrated that the Cu₃P·0.75Co₂P with a C_{d1}=0.1598 mF cm⁻² is favorable to show higher electrocatalytic performance.

Figure S12. Cyclic voltammetry at scan rates of 5-25 mV s⁻¹: (A) Cu₃P·1.5Co₂P, (B) Cu₃P·0.75Co₂P, (C) Cu₃P·0.375Co₂P, in the range of -0.991--0.871 V vs. SCE in 1.0 M KOH medium; and (D) Charging current density differences ($\Delta J = Ja - Jc$) plotted against scan rates of the different ratios of Cu₃P-Co₂P nanocomposite. The linear slope, equivalent to twice the double-layer capacitance (C_{dl}).

Figure S13. Cyclic voltammetry at scan rates of 5-25 mV s⁻¹: (A) Cu₃P·0.75Co₂P, (B) Cu₃P and (C) Co₂P, in the range of -0.991--0.871 V vs. SCE in 1.0 M KOH medium. (D) Charging current density differences ($\Delta J = Ja - Jc$) plotted against scan rates of the different ratios of Cu₃P-Co₂P nanocomposite. The linear slope, equivalent to twice the double-layer capacitance (C_{dl}).

Figure S14. XPS spectra of Co 2p for Cu₃P·0.75Co₂P and Co₂P.

Figure S11 is the Co 2p spectra of Cu₃P·0.75Co₂P and Co₂P. For Co₂P, the binding energies at 778.1 eV for Co $2p_{3/2}$ and 793.3 eV for Co $2p_{1/2}$ are spin-orbit characteristics of Co, while the existing binding energies at 782.1 eV for Co²⁺ $2p_{3/2}$ and 797.1 eV are spin-orbit characteristics of Co²⁺. While for Cu₃P·0.75Co₂P, the peaks at 781.6 eV for Co²⁺ $2p_{3/2}$ and 796.8 eV for Co²⁺ $2p_{1/2}$ are spin-orbit characteristics of Co²⁺. The comparation of Co 2p spectra between Cu₃P·0.75Co₂P and Co₂P shows that there is a negative shift of 0.5 eV for Cu₃P·0.75Co₂P contrasted to the Co²⁺ of the Co₂P.

Figure S15. XPS spectra of Cu $_{2}p$ for Cu₃P·0.75Co₂P and Cu₃P.

Figure S12 is the core spectra of Cu 2p. For Cu₃P catalyst, the peaks at 931.9 eV and 951.9 eV are assigned to the Cu²⁺ $2p_{3/2}$ and Cu²⁺ $2p_{1/2}$ of the Cu₃P. In terms of Cu₃P·0.75Co₂P, the Cu 2p shows two typical peaks of 932.3 eV and 952.3 eV that are associated with Cu²⁺ $2p_{3/2}$ and Cu²⁺ $2p_{1/2}$, respectively. Comparing with the Cu 2p spectrum of the Cu₃P, the Cu²⁺ of the Cu₃P·0.75Co₂P has a positive shifting of 0.4 eV. Figures S10 and S11 indicate there is charge transfer from Cu₃P to Co₂P.

Figure S16. XPS spectra of P 2p for Cu₃P·0.75Co₂P, Co₂P and Cu₃P.

Figure S13 is the P 2p spectra of Cu₃P·0.75Co₂P, Co₂P and Cu₃P. For Cu₃P, the P³⁻ $2p_{3/2}$ and P³⁻ $2p_{1/2}$ are shown at the peak position of 128.8eV and 129.7eV. While the 134.3eV and the 135.2eV are corresponding to the P⁵⁺ $2p_{3/2}$ and P⁵⁺ $2p_{1/2}$. For Co₂P, the P³⁻ $2p_{3/2}$ has a distinct peak at 128.9 eV, a matching peak of 129.8 eV ascribed to P³⁻ $2p_{1/2}$. The peaks at 133.2 eV and the other of 134.1 eV, corresponding to the spin-orbit characteristics of P⁵⁺ $2p_{3/2}$ and P⁵⁺ $2p_{1/2}$, respectively. As to the Cu₃P·0.75Co₂P, the corresponded 129.3 eV and 130.2 eV of are the typical peaks of the P³⁻ $2p_{3/2}$ and the P³⁻ $2p_{1/2}$, which has a positive shift of 0.4 eV compared with the P³⁻ of the Cu₃P

Figure S17. TEM image of the $Cu_3P \cdot 0.75Co_2P$ anode catalyst after the stability test, showing a thick layer on its surface due to oxidation process in OER.

Figure S18. XPS spectra of Cu 2p, Co 2p and P 2p for $Cu_3P \cdot 0.75Co_2P$ anode catalyst after the stability test.

Table S1. The calculation of the adsorption free energy for the pure Co_2P , the pure Cu_3P and the $Cu_3P\cdot 0.75Co_2P$ nanocomposite.

Materials	$\Delta E_{\rm H}({\rm eV})$	$\Delta E_{OH}(eV)$	$\Delta E_{O}(eV)$
Co ₂ P	0.065	0.063	0.556
Cu ₃ P	0.633	2.298	-0.146
$Cu_3P \cdot 0.75Co_2P$	-0.386	1.453	-0.488

 Table S2. The TOF values of the catalysts.

	Cu ₃ P·1.5Co ₂ P	Cu ₃ P·0.75Co ₂ P	Cu ₃ P·0.375Co ₂ P
TOF (H ₂ s ⁻¹)	1.67×10 ⁻⁴	3.58×10 ⁻⁴	3.12×10 ⁻⁴

The TOF value is determined by the following equation, in order to assess the efficiency of the catalysts. TOF = $n_{(H2)}$ / n_{cata} s, where $n_{(H2)}$ is the molal weight of the hydrogen, s is the time, and n_{cata} is the moral weight of the catalysts.

Catalyst	Overall voltage for $j = 10 \text{ mA cm}^{-2}$	Reference
$Cu_3P \cdot 0.75Co_2P$	1.55 V	This work
NF-Ni ₃ Se ₂ /Ni	1.612 V	Nano Energy, 2016, 24, 103.
NiFe/NiCo ₂ O ₄	1.67 V	Adv. Funct. Mater. 2016, 26, 3515.
NiCoP NPs	1.64 V	Adv. Mater. Interfaces, 2015, 3, 1500454
Co-P	1.65 V	Angew. Chem. Int. Ed. 2015, 54, 6251.
СоР	1.62 V	Adv. Funct. Mater., 2015, 25, 7337.
$Ni_{0.9}Fe_{0.1}/NC$	1.68 V	J. Am. Chem. Soc., 2015, 137, 2688.
EG/Co _{0.85} Se/NiFe-LDH	1.67 V	Energy Environ. Sci., 2016, 9, 478.
Ni ₅ P ₄	1.7 V	Angew. Chem. Int. Ed. 2015, 54.
CoP/rGO	1.7 V	Chem. Sci., 2016, 7, 1690.

 Table S3. Comparison of recent bifunctional electrocatalysts for overall water

 splitting in 1.0 M KOH.