Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Supporting Information for MnB₂ nanosheet and nanotube: stability, electronic structures, novel functionalization and application for Li-ion battery.

Bingwen Zhang,^{1,2†} Lele Fan,^{3†} Jingsan Hu,² Jianfei Gu,² Baolin Wang,³ and Qinfang Zhang^{*1} ¹ School of materials science and engineering, Yancheng Institute of Technology, Yancheng 224051, China.

² National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China.

³ Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province,

Yancheng Institute of Technology, Yancheng, 224051, China.

[†] These authors contributed equally to this work. and

* E-mail: gfangzhang@gmail.com.

This Supporting Information includes the cleavage energy of monolayer MnB₂ from bulk MnB₂, Ab initio molecular dynamics (AIMD) results of h-MnB₂ and t-MnB₂ with O₂ molecules adsorption, the magnetic property of bilayer MnB₂ nanosheets, the magnetic property of bulk MnB₂, the crystal field splitting of h-MnB₂ nanosheet, the electronic band of passivated h-MnB₂ by halogen, the AIMD results of (10-0) zigzag h-MnB₂ nanosheet at 400 K and 500 K, the band structure and density of states of (10.0) zigzag h-MnB₂ nanosheet and the bending property of TmB₂ nanosheets.

FIG. S1. The relative energy as function of cleavage distance $(d - d_0)$ from bulk MnB₂.

II. AIMD RESULTS OF H-MNB2 AND T-MNB2 WITH O2 MOLECULES ADSORPTION

We performed the AIMD calculations at 300 K for the condition of O_2 molecules adsorption, The result shows that the bond between Mn-B, B-B and O-O are obviously twisted, which suggests that the MnB₂ nanosheets is not suitable to be exposed to air.

FIG. S2. The geometric structures of h-MnB₂ (a) and t-MnB₂ (b) nanosheet after the AIMD calculations at 300 K.

III. MAGNETIC PROPERTY OF BILAYER MNB₂ NANOSHEETS

FIG. S3. The magnetic property of bilayer nanosheets of h-MnB₂ (a) and t-MnB₂ (b).

IV. MAGNETIC PROPERTY OF BULK MNB₂

The FM, AAFM, and CAFM states of bulk MnB₂ are shown in Fig. S4, the AAFM state is the ground state, the FM state is 0.73 eV higher than the AAFM, and the CAFM state is 1.69 eV than the AAFM state. The Monte Carlo result is shown in FiG. S5, the result shows that the Néel temperature is about 740 K.

FIG. S4. Three different magnetic states of bulk MnB₂.

FIG. S5. Specific heat as a function of temperature.

V. CRYSTAL FIELD SPLITTING OF H-MNB₂ NANOSHEET

The h-MnB₂ nanosheet is in C_{6v} symmetry, each Mn atom has six ligands of B atoms. The d orbitals wave functions can be expanded in terms of spherical harmonics:

$$\begin{cases} d_{xz} = \frac{\sqrt{2}}{2}(Y_{21} + Y_{2-1}) = \sqrt{\frac{15}{4\pi}} \frac{xz}{r^2} \\ d_{yz} = \frac{\sqrt{2}}{2i}(Y_{21} - Y_{2-1}) = \sqrt{\frac{15}{4\pi}} \frac{yz}{r^2} \\ d_{xy} = \frac{\sqrt{2}}{2i}(Y_{22} - Y_{2-2}) = \sqrt{\frac{15}{2\pi}} \frac{xy}{r^2} \\ d_{x^2 - y^2} = \frac{\sqrt{2}}{2}(Y_{22} + Y_{2-2}) = \sqrt{\frac{15}{16\pi}} \frac{x^2 - y^2}{r^2} \\ d_{z^2} = Y_{20} = \sqrt{\frac{5}{16\pi}} \frac{2z^2 - x^2 - y^2}{r^2} \end{cases}$$
(1)

Here x, y and z are the three components of $\vec{r}(x,y,z)$, which is position vector of d electrons. With in the electrostatic crystal field approximation, the ligands could be treated as point charges perturbing the fivefold degenerate d electron energy level, crystal splitting could be evaluated from crystal electric potential:

$$V(r) = \sum_{i}^{6} \frac{q_i}{|\vec{R_i} - \vec{r}|}$$
(2)

We take the approximation of expanding the crystal electric potential without considering the terms higher than six order, and then integrating over crystal electric potential using the crystal wave functions above, the energy level of the five orbitals are:

$$\begin{cases} E_{d_{Z^2}} = \frac{3 < r^2 > (45 < r^2 > -11a^2)}{14a^4} \\ E_{d_{x^2-y^2}} = \frac{3(85 < r^4 > -6a^2 < r^2 >)}{28a^4} \\ E_{d_{xy}} = \frac{3(85 < r^4 > -6a^2 < r^2 >)}{28a^4} \\ E_{d_{xz}} = \frac{3 < r^2 > (40 < r^2 > -9a^2)}{14a^4} \\ E_{d_{yz}} = \frac{3 < r^2 > (40 < r^2 > -9a^2)}{14a^4} \end{cases}$$
(3)

Here, a is the bond length of Mn and B, the results show that the d orbitals splits to three group, singlet d_{z^2} , double degenerate d_{xy} and $d_{x^2-y^2}$ as well as double degenerate d_{xz} and d_{yz} .

VI. THE ELECTRONIC BAND STRUCTURES OF F/CL PASSIVATED H-MNB $_2$ NANOSHEET WITH DIFFERENT STRAINS

We plotted the band structures of F or Cl passivated h-MnB₂ nanosheet. The discrepancy of h-MnB₂Cl band structures under different tensile strains is tiny while the dispersion of bands under the strain of -4% are cross the Fermi energy at Γ point, which is obviously changed.

FIG. S6. Band structures: (a) h-MnB₂F with strain of e = 2%; (b), (c) and (d) are h-MnB₂Cl in strain of e = 2%, e = 0% and e = -4%, respectively.

FIG. S7. The AIMD result of (10_0) zigzag h-MnB₂ nanotube at 400 K(a+b) and 500 K(c+d).

VII. THE AIMD RESULTS AND ELECTRONIC BAND STRUCTURE AND DENSITY OF SATES OF (10_0) ZIGZAG H-MNB₂ NANOTUBE

It reveals that the (10_0) zigzag h-MnB₂ nanotube is metallic from the band structure and the density of states of Fig. S8, which is beneficial for electron transport.

FIG. S8. Band structure and density of sates of (10_0) zigzag h-MnB₂ nanotube.

VIII. BENDING PROPERTY OF TMB₂ IN C_{6v} POINT GROUP

We adopted a simple nanobibbon method to confirm the bending property of different TmB_2 nanosheets, which are in C_{6v} point group.

FIG. S9. Bending property of TmB₂ nanosheets.