ESI for

Transition Metal Doping Activated Basal-Plane Catalytic Activity of Two-Dimensional 1T'-ReS₂ for Hydrogen Evolution Reaction: A

First-Principles Calculation Study

Jing Pan,^{1#} Rui Wang,^{1#} Xiaoyong Xu,¹ Jingguo Hu,^{1*} Liang Ma^{2*}

¹College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China

² School of Physics, Southeast University, Nanjing 211189, China

*Email: jghu@yzu.edu.cn; liang.ma@seu.edu.cn

The calculated details of LDOS of in-plane S atoms and edge S atoms

To investigate the local density of states (LDOS) of in-plane S atoms and edge S atoms, we built a ReS₂ nanoribbons by cutting from a periodic monolayer ReS₂ along its diamond-shaped (DS) chains direction, with S atoms on both edges, as shown in Fig. S1. A one-dimensional periodic boundary condition is used along with the growth direction, vacuum layers of at least 10 Å are incorporated along the nonperiodic direction to ensure decoupling between neighboring images.

The GGA of the PBE exchange-correlation functional was implemented. The cutoff energy for the plane-wave basis set was 400 eV. Self-consistency was reached once energy difference between two consecutive steps was less than 1.0×10^{-5} eV, and the Hellman-Feynman forces acting on each atom was smaller than 0.01 eV/Å. The Monkhorst-Pack *k*-point was set to $9 \times 1 \times 1$ for the first Brillouin zone integration in geometry optimization and increased to $31 \times 1 \times 1$ in electronic structure calculations.

top view

side view

Fig. S1. Top and side views of a ReS₂ nanoribbons.

The calculated details of formation energy of TM-doped ReS₂

We calculate the formation energy (E_{form}) , defined as

$$E_{\text{form}} = E_{\text{tot}}(\text{TM}) - E_{\text{tot}}(\text{ReS}_2) - \sum n_i \mu_i, \tag{1}$$

where $E_{tot}(TM)$ and $E_{tot}(ReS_2)$ represent total energy of the doped and undoped ReS₂, n_i is the number of atoms that has been added to or removed from the supercell. μ_i is the chemical potential of species *i* (host or dopant atoms in the bulk phase). Because μ_{host} is greatly depended on experimental growth conditions, we consider the Re-rich and the S-rich conditions, the chemical potential of Re and S under Re-rich conditions can be defined as

$$\mu_{\text{Re}}^{\text{Re-rich}} = \mu_{\text{Re}}, \ \mu_{\text{S}}^{\text{Re-rich}} = \mu_{\text{S}} + \frac{1}{2} \Delta H_f(\text{ReS}_2),$$
(2)

In which, μ_{Re} is the cohesive energy of Re at bulk metallic face-centered-cubic (fcc) structure, S is the binding energy of S₂ molecule. Under S-rich conditions,

$$\mu_{\text{Re}}^{\text{S-rich}} = \mu_{\text{Re}} + \Delta H_f(\text{ReS}_2), \ \mu_{\text{S}}^{\text{S-rich}} = \mu_{\text{S}},$$
(3)

Where, $\Delta H_f(\text{ReS}_2)$ is the heat of formation of ReS_2 and defined as

$$\Delta H_f(\text{ReS}_2) = \mu_{\text{ReS}_2} - \mu_{\text{Re}} - 2\mu_{\text{S}},\tag{4}$$

Where, μ_{ReS2} is equal to $E_{tot}(ReS_2)$ per ReS₂ formula unit.

The adsorption free energy of hydrogen in TM-doped ReS₂

Hydrogen adsorption free energy (ΔG_{H^*}) can be defined as

$$\Delta G_{\mathrm{H}*} = \Delta E_{\mathrm{H}} + \Delta E_{\mathrm{ZPE}} - \mathrm{T}\Delta S_{\mathrm{H}},\tag{5}$$

where ΔE_{ZPE} is the difference in zero-point energy of hydrogen vibration between the adsorbed state and the gas phase, T is the surface temperature, $\Delta S_{\rm H}$ is the entropy difference between the adsorbed state of the system and gas phase at standard condition, with ΔE_{ZPE} - T $\Delta S_{\rm H}$ = 0.24 eV at T = 300 K, a reasonable, well established approximation.¹⁻³ With these values, $\Delta G_{\rm H*}$ can be rewritten as:

$$\Delta G_{\mathrm{H}^*} = \Delta E_{\mathrm{H}} + 0.24,\tag{6}$$

$$\Delta E_{\rm H} = E({\rm ReS}_2 + {\rm H}) - E({\rm ReS}_2) - E({\rm H}_2)/2, \tag{7}$$

where $E(\text{ReS}_2 + \text{H})$ and $E(\text{ReS}_2)$ are the energies of pristine or doped ReS_2 with and without an adsorbed H atom, $E(\text{H}_2)$ is the energy of a hydrogen molecule in the gas phase.

		1	2	3	4	5	6
Pure ReS ₂	ΔG_{H^*}	1.45	1.64	1.60	1.67	1.65	1.78
	$d_{ ext{S-H}}(ext{Å})$	1.363	1.390	1.392	1.375	1.397	1.411
	$q_{ m bader}$	6.532	6.450	6.468	6.469	6.452	6.416
Mo-doing	ΔG_{H^*}	-0.01	0.61	0.25	0.22	0.61	0.85
	$d_{ ext{S-H}}(ext{Å})$	1.359	1.372	1.366	1.366	1.371	1.379
	$q_{ m bader}$	6.562	6.491	6.501	6.516	6.479	6.441
Cr-doing	ΔG_{H^*}	0.00	0.68	0.28	0.25	0.65	0.95
	$d_{ ext{S-H}}(ext{Å})$	1.362	1.372	1.368	1.367	1.372	1.377
	$q_{ m bader}$	6.541	6.509	6.474	6.501	6.467	6.464
Mn-doing	ΔG_{H^*}	0.72	1.22	0.73	0.89	0.98	1.07
	$d_{\text{S-H}}(\text{\AA})$	1.363	1.370	1.367	1.372	1.379	1.388
	$q_{ m bader}$	6.507	6.483	6.433	6.470	6.447	6.430
Fe-doing	ΔG_{H^*}	0.58	0.91	0.65	0.95	0.72	0.88
	$d_{\text{S-H}}(\text{\AA})$	1.365	1.369	1.367	1.371	1.381	1.392
	$q_{ m bader}$	6.475	6.485	6.412	6.436	6.432	6.438
Co-doing	ΔG_{H^*}	0.15	0.62	0.53	0.39	0.44	0.42
	$d_{\text{S-H}}(\text{\AA})$	1.362	1.363	1.366	1.367	1.379	1.386
	$q_{ m bader}$	6.484	6.463	6.441	6.436	6.411	6.403
Pt-doing	ΔG_{H^*}	0.18	0.01	0.59	0.15	0.34	0.12
	$d_{\text{S-H}}(\text{\AA})$	1.364	1.375	1.385	1.375	1.382	1.387
	$q_{ m bader}$	6.390	6.462	6.333	6.405	6.38	6.401
Au-doing	ΔG_{H^*}	0.10	0.78	0.29	0.41	0.25	0.24
	$d_{\text{S-H}}(\text{\AA})$	1.358	1.362	1.363	1.362	1.371	1.378
	$q_{ m bader}$	6.463	6.318	6.456	6.376	6.373	6.384
Ag-doing	ΔG_{H^*}	0.07	0.32	0.16	0.34	0.36	0.28
	$d_{\text{S-H}}(\text{\AA})$	1.360	1.366	1.364	1.66	1.373	1.380
	<i>q</i> bader	6.517	6.405	6.472	6.431	6.383	6.386

Table S1. The adsorption free energy of hydrogen (ΔG_{H^*} in eV), the bond length of S-H $d_{\text{S-H}}(\text{\AA})$ and bader charges of S at different six sites for pure and TM-doped ReS₂.

The comparison of ΔG_{H^*} in ML-ReS₂ and ML-MoS₂

As shown in Fig. S2, for ML-ReS₂, the ΔG_{H^*} on different S atoms near the Re atom is different owing to the intrinsic asymmetry in 1T'-ReS₂. On the contrary, the ΔG_{H^*} is equal in ML-MoS₂ contributing from its high symmetric structural properties. Additionally, ΔG_{H^*} ranges from 1.45 to 1.78 eV in ML-ReS₂, which is lower than that of ML-MoS₂ with ΔG_{H^*} of 1.91 eV, indicating ReS₂ exhibits higher catalytic activity.

Fig. S2. The calculated ΔG_{H^*} on different S sites for (a) ML-ReS₂ and (b) ML-MoS₂.

SUPPORTING REFERENCES

- Q. Wang, Z. L. Zhao, S. Dong, D. He, M. J. Lawrence, S. Han, C. Cai, S. Xiang, P. Rodriguez, B. Xiang, Z. Wang, Y. Liang, M. Gu, *Nano Energy*, 2018, 53, 458.
- 2. J. K. Norskov, T. Bligaard, A. Logadottir, J. R. Kitchin, J. G. Chen, S. Pandelov, U. Stimming, *Journal of the Electrochemical Society*, 2005, **152** J23.
- 3. Y. Zhou, W. Chen, P. Cui, J. Zeng, Z. Lin, E. Kaxiras, Z. Zhang, Nano Lett. 2016, 16, 6058