Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2019

Distinct photophysical properties in atom-precise silver and copper nanocluster analogues

Yan-Ling Li, Zhao-Yang Wang, Xiao-Hong Ma, Peng Luo, Chen-Xia Du* and Shuang-Quan Zang*

College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou

450001, China.

*E-mail: zangsqzg@zzu.edu.cn; dcx@zzu.edu.cn

Materials and Methods

Materials and reagents

1,2-Dithiol-o-carborane was prepared by a literature method.^[51] All other reagents and solvents were commercially available and used without additional purification.

Characterization.

Thermogravimetric (TG) analyses were performed on an SDT 2960 thermal analyzer from room temperature to 800 °C at a heating rate of 5 °C/min under a nitrogen atmosphere. To compensate for surface charging effects, all XPS spectra are referred to the C 1s neutral carbon peak at 284.6 eV. UV-vis absorption spectra were recorded with a U-2000 spectrophotometer. HRESI-TOF-MS spectra were collected on an AB Sciex X500R Q-TOF spectrometer. Elemental analysis (EA) of each relevant species was conducted using a Perkin-Elmer 240 elemental analyzer. Fourier transform infrared (FT-IR) spectra were recorded on a Bruker TENSOR 27 FT-IR spectrometer in the 400-4000 cm⁻¹ region with KBr pellets. EDS measurements were carried out using Zeiss Sigma 500 system. PXRD data were collected at room temperature in air using an X'Pert PRO diffractometer (Cu K α , λ = 1.54178 Å). Luminescence measurements were carried out using a HORIBA FluoroLog-3 fluorescence spectrometer. Steady-state emission spectra were obtained using an East Changing TC202 temperature controller after evacuating each sample for 30 min using a VALUE VRD-16 vacuum pump. Luminescence decays were measured on a HORIBA Scientific Fluorolog-3 spectrofluorometer equipped with a 355-nm laser operating in timecorrelated single photon counting mode (TCSPC) with a resolution time of 200 ps. SCXRD measurements were performed on a Rigaku XtaLAB Pro diffractometer with Cu-K α radiation (λ = 1.54184 Å) at 150 K for Cu_{17} and Ag_{17} . All non-hydrogen atoms were refined with anisotropic thermal parameters, and the hydrogen atoms were included at their idealized positions. Density functional theory (DFT) calculations were performed with Gaussian 09^[S2-S3] using the B3LYP functional.^[S4–S6] Mayer bond-order analysis was conducted by Multiwfn.^[S7]

Synthesis of $[Cu_{17}I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_{11}]$ (Cu₁₇).

Complex Cu_{17} was synthesized by the reaction of 10 mg 1,2-dithiol-*o*-carborane with 19 mg CuI in 4 mL CH₃CN-THF (v:v = 1:1) at room temperature. The resultant clear solution was allowed to evaporate slowly in darkness at room temperature for three days to give colorless block-like crystals. Yield: 30% (based on C₂B₁₀H₁₀S₂H₂).

Synthesis of $[Ag_{17}I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_{11}]$ (Ag₁₇).

Complex Ag_{17} could be synthesized from Cu_{17} by metal-ion exchange: Cu_{17} (0.016 g) were dissolved in 2 mL of CH_2Cl_2 , and 2 mL of 0.1 mM AgNO₃ in CH_3CN was added to give a clear reaction solution at room temperature. The resultant solution was allowed to evaporate slowly in darkness at 15 °C for five days to give colorless block-like crystals. Yield: 33% (based on Cu_{17}).

Figure S1. Photographs of as-synthesized Cu_{17} and Ag_{17} crystals, which show similar uniform colorless block morphology. Ten crystals of them were randomly picked out for measurement, which showed virtually identical unit cells (Table S1-2).

No.	<i>a /</i> Å	b/Å	c /Å	α /°	в /°	γ /°	V/ų
1	18.873(5)	18.877(6)	24.295(8)	90.08(3)	89.96(3)	119.93(3)	7501(4)
2	18.840(3)	18.845(3)	24.458(5)	90.01(1)	89.94 (2)	120.01(1)	7523(2)
3	18.860(5)	18.873(4)	24.329(5)	90.04 (1)	90.09(2)	119.97(3)	7502(3)
4	18.856(3)	18.857(3)	24.506(4)	89.98(1)	89.98(1)	120.01 (1)	7545(2)
5	18.832(5)	18.844(6)	24.440(5)	89.99(2)	89.99(2)	119.89(3)	7520(3)
6	18.818(6)	18.830(5)	24.342(5)	90.06(1)	89.97(2)	119.88(3)	7479(3)
7	18.876(4)	18.878(3)	24.400(5)	90.05 (1)	90.01(18)	119.98(2)	7531(3)
8	18.874(4)	18.916(5)	24.492(7)	90.09 (2)	90.00(2)	119.97(3)	7575(3)
9	18.853(7)	18.889(7)	24.360(9)	90.06(3)	90.08(3)	119.86(4)	7523(5)
10	18.874(8)	18.889(9)	24.361(7)	90.08(3)	89.98(3)	119.95(5)	7526(5)

Table S1. Unit-cell parameters collected at room temperature of ten Cu_{17} crystals which were randomly picked from one vial shown in Figure S1a.

No.	<i>a /</i> Å	b/Å	<i>c /</i> Å	α /°	в /°	γ /°	V/ų
1	19.606(2)	19.607(2)	24.135(3)	90.04(1)	89.98(9)	120.01(1)	8035(2)
2	19.650(2)	19.651(1)	24.145(4)	90.07(1)	89.95(1)	119.94(1)	8079(2)
3	19.568(9)	19.589(9)	24.166(8)	90.09(3)	90.16(3)	119.95(5)	8029(5)
4	19.600(2)	19.593(3)	24.161(3)	89.99(1)	90.06 (9)	119.98(1)	8038(2)
5	19.619(2)	19.608(2)	24.132(4)	89.98(1)	89.85(1)	120.03(1)	8037(2)
6	19.556(1)	19.550(1)	24.247(19)	90.04(6)	90.03(6)	120.02(8)	8026(1)
7	19.556(7)	19.570(7)	24.178(9)	90.05(3)	89.99(3)	119.93(4)	8019(5)
8	19.571(4)	19.582(4)	24.098(6)	90.17(1)	90.03(1)	120.00(2)	7998(3)
9	19.564(1)	19.581(1)	24.164(11)	90.28(5)	89.88(5)	119.92(8)	8023(8)
10	19.556(1)	19.550(1)	24.247(19)	90.04(6)	90.03(6)	120.02(8)	8026(1)

Table S2. Unit-cell parameters collected at room temperature of ten Ag_{17} crystals which were randomly picked from one vial shown in Figure S1b.

Figure S2. Molecular structures of isomeric **Cu**₁₇ and **Ag**₁₇ nanoclusters. (a) The structure of $[Cu_{17}I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_{11}]$ (**Cu**₁₇) (Cu1-Cu4 2.795 Å; Cu1-Cu3 3.010 Å; Cu1-Cu1¹ 3.024 Å; Cu1-Cu1² 2.929 Å; Cu1-Cu1⁴ 2.929 Å; Cu1-Cu3² 3.011 Å; Symmetry codes: ^a +*x*, +*y*, 3/2-*z*; ^b1-*y*, 1+*x*-*y*, +*z*; ^c1-*y*, 1+*x*-*y*, 3/2-*z*; ^d+*y*-*x*, 1-*x*, +*z*; ^e+*y*-*x*, 1-*x*, 3/2-*z*). (b) The structure of $[Ag_{17}I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_{11}]$ (**Ag**_{17}) (Ag1-Ag4 2.998 Å; Ag1-Ag3 3.092 Å; Ag1-Ag1² 3.144 Å; Ag1-Ag1⁴ 3.144 Å; Ag1-Ag1³ 3.293Å; Ag1-Ag3² 3.111Å; Symmetry codes: ^a+*y*-*x*, 1-*x*, 3/2-*z*; ^b+*y*-*x*, 1-*x*, +*z*; ^c+*x*, +*y*, 3/2-*z*; ^d+*y*-*x*, 1+*x*-*y*, 3/2-*z*; ^b+*y*-*x*, 1-*x*, +*z*;

Figure S3. Structure of the Cu_{17} outer shell comprising condensation of nine (CuINS₂) tetrahedra. The outer shell is considered to have three layers, and the lumbar layer is composed of Cu_3I_3 ; the both layers above and below the lumbar layer consist of three Cu atoms (Cu3). The number represent Cu2, Cu3 and Cu4 atoms, respectively.

Figure S4. Coordination modes of Cu atoms and thiolate ligands ($C_2B_{10}H_{10}S_2$) in **Cu**₁₇. The dashed lines represent the Cu-Cu interactions. Color legend: Cu, brown; S, yellow; B, blue; C, gray. Symmetry codes: ^a +x, +y, 3/2-z; ^b1-y, 1+x-y, +z; ^c1-y, 1+x-y, 3/2-z; ^d+y-x, 1-x, +z; ^e+y-x, 1-x, 3/2-z). Direct detection of S²⁻ formed from C-S cleavage of thiolate ligand is very difficult because of the low concentration, as sulfides would be generated with high concentration of S²⁻. Hence we examined the reaction solution containing 1,2-dithiol-*o*-carborane (C₂B₁₀H₁₀S₂H₂) and copper iodide (CuI) in CH₃CN/THF with negative-mode ESI-MS. Fortunately, besides 1,2-dithiol-*o*-carborane in the reaction solution (Figure S5a), the isotopic peaks of a missing S atom species (C₂B₁₀H₁₀SH⁻) was observed in the mass spectrum, indicating the S-C bond cleavage of the thiol ligands and the possible formation of sulfido groups which are consequently incorporated in the metal clusters (Figure 5b).

Figure S5. Negative-mode ESI-MS fragment of synthetic reaction solution of Cu_{17} . (a) 1,2-dithiolo-carborane; (b) a S atom missing $C_2B_{10}H_{10}SH^-$ species.

Figure S6. Difference electron density maps of the assigned (a) and unassigned (b) central S atom of the **Cu**₁₇ cluster generated by *PLATON*. The blue dotted lines are the zero contours, the green solid lines are positive contours at 0.8 eÅ⁻³ level. According to the single-crystal X-ray structure analysis and charge balance, the high Q peak in the center of the structure was rationally assigned to a S atom rather than metal (Cu, Ag) or non-metal I, C, O and B atom for lower R factors. The difference electron-density maps of the assigned and unassigned central atom of Cu₁₇ generated by *PLATON* are shown in Figure S6. For the unassigned map, the significant residual electron density is observed in the structure center. After inclusion of the S1 atom, the residual electron density around the S1 site is only about 0.8 eÅ⁻³, indicating that the electron density at this position matches well with that of the assigned S atom.

Figure S7. Coordination modes of Ag atom and thiolate ligand ($C_2B_{10}H_{10}S_2$) in **Ag**₁₇. The dashed lines represent the Ag···Ag interactions. Color legend: Ag, green; S, yellow; B, blue; C, gray. Symmetry codes: ^a+y-x, 1-x, 3/2-z; ^b+y-x, 1-x, +z; ^c+x, +y, 3/2-z; ^d1-y, 1+x-y, +z; ^e1-y, 1+x-y, 3/2-z).

Figure S8. X-ray powder diffraction (PXRD) patterns of Cu_{17} and Ag_{17} . (a) The simulated PXRD pattern from single-crystal data of Cu_{17} overlaps that of the as-prepared crystals, indicating phase purity. Some peaks were not present in the patterns of air-dried Cu_{17} samples, but these peaks were immediately restored after treatment with CH_3CN , indicating that the framework of Cu_{17} remained intact during air drying. (b) An analysis similar to that used for Cu_{17} was applied to Ag_{17} .

As shown in Figure S9, 10.32% weight loss until 330 °C for Cu_{17} and 6.56% weight loss until 305 °C for Ag_{17} indicate approximately eight and six CH_3CN molecules retained in air-dried Cu_{17} and Ag_{17} samples, respectively. These findings are consistent with the results of elemental analysis (EA).

For air-dried Cu_{17} , $[Cu_{17}/I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_8]$, EA: Cal. H, 2.76; C, 10.94; N, 3.66; S, 13.62. Found H, 2.78; C, 10.90; N, 3.62; S, 13.40.

Theoretical content of eight CH₃CN in air-dried Cu₁₇:

 $M_{(CH3CN)8} / M_{[Cu17/I3S(C2B10H10S2)6(CH3CN)8]} \times 100\% = 10.73\%$

Experimental: The percentage of loss mass before 330 °C is found to be 10.32%, which was assigned to the departure of eight CH_3CN molecules.

For air-dried Ag_{17} , $[Ag_{17}/I_3S(C_2B_{10}H_{10}S_2)_6(CH_3CN)_6]$, EA: Cal. H, 2.10; C, 7.72; N, 2.25; S, 11.17. Found H, 2.04; C, 8.03; N, 2.54; S, 11.09.

Theoretical content of six CH₃CN in air-dried Ag₁₇:

 $M_{(CH3CN)6} / M_{[Ag17/I3S(C2B10H10S2)6(CH3CN)6]} \times 100\% = 6.53\%$

Experimental: The percentage of loss mass before 305 °C is found to be 6.56%, which was assigned to the departure of six CH_3CN molecules.

Figure S9. TG plots of air-dried Cu₁₇ and Ag₁₇ crystalline samples.

Figure S10. FT-IR spectra of Cu₁₇ and Ag₁₇ crystalline samples.

Figure S11. EDS mapping of air-dried Cu_{17} and Ag_{17} crystals. (a) Cu, I, S, B, C and N are found in the parent Cu_{17} cluster. The calculated atomic ratio of Cu : S = 17:13.2 and Cu : I = 17 : 3.0, which agrees with the formula by SCXRD structural analysis. (b) No traces of Cu were found in the daughter Ag_{17} cluster, indicating the total conversion from Cu_{17} to Ag_{17} , and the expected Ag, I, S, B, C and N are observed. The calculated atomic ratio of Ag : S = 17 : 13.1 and Ag : I = 17 : 3.0, which is in accordance with the formula by SCXRD structural analysis. The amount N element is less because partial coordinated CH₃CN molecules departed, as has been confirmed by TG and elemental analysis results.

As shown in Figure S12 a and b, X-ray photoelectron spectroscopy (XPS) survey spectra showed all the expected elements in Cu_{17} and Ag_{17} , and no obvious Cu elements observed in Ag_{17} , suggesting complete metal exchange from Cu_{17} and Ag_{17} , which is consistent with the results of SCXRD analysis and EDS analysis. The expanded scans of the specific regions of metal atoms, S and I are shown in Figure S10 c and d. Upon peak fitting, the peak of S $2p_{3/2}$ at 163.1 eV in Cu_{17} and 163.0 eV in Ag_{17} can be attributed to thiolate S 2p that is lower than the BE of S in pure solid ligand (1,2-dithiol-*o*-carborane); the peak at 162.4 eV in Cu_{17} and 162.0 eV in Ag_{17} are assigned to central S²⁻ ions, that corresponds to BE of in Ag_2 S nanoparticles.^[S8] The atom ratio of thiolate S and center S is calculated to be 12:1 in the two clusters, giving excellent fitting results. The I3d of the two clusters are quite similar and exhibits peaks at 619.9 eV in Cu_{17} and 620.0 eV in Ag_{17} , respectively. Therefore, an atomic ratio of 12:1 for thiolate S and S ions from XPS analysis also further support this formula Cu_{17} and Ag_{17} .

Figure S12. (a, b) XPS survey spectrum of Cu_{17} and Ag_{17} cluster and the enlargement of the region between 900-1000 eV, suggesting no obvious Cu in Ag_{17} crystals and complete metal exchange from Cu_{17} to Ag_{17} . (c, d) The high-resolution XPS of S 2p and I 3d, respectively.

Figure S13. UV-vis diffuse reflectance spectra of Cu_{17} and Ag_{17} solid-state samples containing a small quantity of CH_3CN .

Figure S14. PL decays of a fluid solution of Cu_{17} in CH₂Cl₂/CH₃CN at 298 K. The identical lifetimes of the emissive peaks at 630 nm and 663 nm suggest that the emission probably originates from the same excited state (excited at 355 nm).

Figure S15. PL decay of a fluid solution of Ag_{17} in DMF/CH₃CN at 240 K. The microsecond-long lifetime of the peak at 662 nm demonstrates the inherent phosphorescence of the system

(excited at 355 nm).

Figure S16. Excitation-dependent emission spectra of Ag_{17} in liquid DMF/CH₃CN (240 K). The intensities have been normalized.

Figure S17. PL decays of Cu_{17} in the solid state and in a frozen matrix. (a, b) PL decays at 633 nm and 663 nm of Cu_{17} in the solid state at 298 K. (c) PL decays of Cu_{17} frozen in CH_2Cl_2/CH_3CN at 77 K (excited at 355 nm).

Figure S18. PL decays of Ag_{17} in the solid state and in a frozen matrix. (a) PL decays at 576 nm of solid-state Ag_{17} samples with a small quantity of CH₃CN. (b) PL decays at 576 nm of Ag_{17} in a frozen DMF/CH₃CN at 77 K.

Figure S19. Temperature-dependent emission spectra of partially CH_3CN -lost Cu_{17} in the solid state. Solid-state Cu_{17} samples were obtained by air drying, and approximately three CH_3CN molecules escaped from the coordination shell of the Cu_{17} clusters. The PL measurements were performed in ambient environment.

Figure S20. Optimized structures of the Cu_{17} and Ag_{17} clusters. (a) The six shortest Cu…Cu distances in Cu_{17} are 2.77 Å. (b) There are six Ag…Ag distances of 3.05-3.06 Å and six of 3.20-3.21 Å in Ag_{17} . All H atoms are omitted.

Figure S21. MOs of the **Cu**₁₇ and **Ag**₁₇ clusters. The numbers in parentheses denote the energies of the HOMO and LUMO levels.

	Cu ₁₇	Ag ₁₇
CCDC number	1868508	1868509
Empirical formula	$C_{34}H_{93}B_{60}Cu_{17}I_3N_{11}O_5S_{13}$	$C_{34}H_{93}B_{60}Ag_{17}I_3N_{11}S_{13}$
Formula weight	3262.38	3935.98
Temperature/K	150.00(10)	150.00(10)
Crystal system	hexagonal	hexagonal
Space group	P6 ₃ /m	P6₃/m
a /Å	18.8251(4)	19.5485(4)
b/Å	18.8251(4)	19.5485(4)
<i>c</i> /Å	24.4114(5)	24.1925(8)
α /°	90	90
β /°	90	90
γ /°	120	120
Volume /ų	7492.0(4)	8006.4(4)
Z	2.00004	2.00004
$ ho_{calc}$ g/cm ³	1.446	1.633
μ /mm ⁻¹	9.309	22.572
F(000)	3148.0	6438.0
Crystal size/mm ³	$0.3 \times 0.21 \times 0.2$	$0.3 \times 0.2 \times 0.1$
	Cu Κα	Cu Kα
Radiation	(λ = 1.54184)	(λ = 1.54184)
20 range for data collection /°	6.52 to 145.824	6.372 to 146.438
	-23 ≤ h ≤ 22,	$-24 \le h \le 11,$
Index ranges	$-22 \leq k \leq 22,$	$-14 \le k \le 17,$
	-20 ≤ <i>l</i> ≤ 29	-29 ≤ <i>l</i> ≤ 25
Reflections collected	29293	26402
	5052 [<i>R_{int}</i> = 0.0482,	5415 [<i>R_{int}</i> = 0.0903,
independent reflections	$R_{sigma} = 0.0377$]	$R_{sigma} = 0.0570$]
Data/restraints/parameters	5052/74/377	5415/120/254
Goodness-of-fit on F ²	1.026	1.132
	$R_1 = 0.0765,$	$R_1 = 0.0928,$
Final K indexes [I>= 2σ (I)]	$wR_2 = 0.2301$	$wR_2 = 0.2527$
Final D indoues [all date]	$R_1 = 0.0942,$	$R_1 = 0.0995,$
Final K Indexes [all data]	$wR_2 = 0.2601$	$wR_2 = 0.2629$
Largest diff. peak/hole / e Å ⁻³	2.25/-3.01	3.21/-2.53

Table S3. Crystal data and structure refinement parameters of $\mathbf{Cu_{17}}$ and $\mathbf{Ag_{17}}.$

 $R_1 = \sum ||F_0| - |F_c| \sum / |F_0|. \ wR_2 = \left[\sum w (F_0^2 - F_c^2)^2 / \sum w (F_0^2)^2 \right]^{1/2}$

Cu ₁₇					
Cu1-Cu4	Cu1-Cu4 2.7950(7)		2.3480(2)		
Cu1-S1	2.2682(5)	Cu3-S4 ⁴	2.3160(2)		
Cu1-S2	2.3030(2)	Cu4-S4	2.5440(6)		
Cu1-S4	2.3000(2)	Cu3-I1	2.6761(7)		
Cu2-S2	2.3410(2)	Cu4-I1	2.6110(7)		
Symmetry codes: ¹ + <i>x</i> , + <i>y</i> , 3/2- <i>z</i> ; ² 1- <i>y</i> , 1+ <i>x</i> - <i>y</i> , + <i>z</i> ; ³ 1- <i>y</i> , 1+ <i>x</i> - <i>y</i> , 3/2- <i>z</i> ; ⁴ + <i>y</i> - <i>x</i> , 1- <i>x</i> , + <i>z</i>					
Ag ₁₇					
Ag1-Ag4	2.9980(2)	Ag3-S2 ⁴	2.5650(5)		
Ag1-Ag3	3.0920(2)	Ag3-S4	2.6610(5)		
Ag1-S1	2.4504(12)	Ag4-S4	2.5940(5)		
Ag1-S2	2.5380(6)	Ag3 ¹ -I1	2.8426(17)		
Ag1-S4	2.4940(5)	Ag4-I1	2.9400(3)		
Ag1-S2	2.5830(5)				
Symmetry codes: 1+y-x, 1-x, 3/2-z; 2+y-x, 1-x, +z; 3+x, +y, 3/2-z; 41-y, 1+x-y, +z					

Table S4. Select bond lengths [Å] in Cu₁₇ and Ag₁₇.

Cu-Cu bond order of Cu ₁₇							
20(Cu)	26(Cu)	0.07683811	41(Cu) 55(Cu)	0.12796015			
20(Cu)	41(Cu)	0.05198729	44(Cu) 53(Cu)	0.10955584			
24(Cu)	26(Cu)	0.07675559	44(Cu) 55(Cu)	0.10852111			
24(Cu)	32(Cu)	0.05223513	46(Cu) 55(Cu)	0.10942942			
25(Cu)	32(Cu)	0.12816930	46(Cu) 56(Cu)	0.10923140			
25(Cu)	44(Cu)	0.10975193	50(Cu) 98(Cu)	0.07663225			
25(Cu)	46(Cu)	0.10776284	53(Cu) 54(Cu)	0.12837670			
25(Cu)	53(Cu)	0.10996172	53(Cu) 56(Cu)	0.10755166			
26(Cu)	59(Cu)	0.07659084	54(Cu) 56(Cu)	0.12736311			
32(Cu)	46(Cu)	0.12735466	54(Cu) 59(Cu)	0.05211944			
32(Cu)	50(Cu)	0.05189868	54(Cu) 103(Cu)	0.05175470			
40(Cu)	41(Cu)	0.05183621	55(Cu) 56(Cu)	0.10939726			
40(Cu)	98(Cu)	0.07664557	98(Cu) 103(Cu)	0.07658039			
41(Cu)	44(Cu)	0.12780661					
		Ag-Ag bond	order of Ag ₁₇				
20(Ag)	26(Ag)	0.13763399	41(Ag) 44(Ag)	0.10490550			
20(Ag)	32(Ag)	0.07322264	41(Ag) 55(Ag)	0.10518764			
20(Ag)	40(Ag)	0.06519477	41(Ag) 59(Ag)	0.07276715			
20(Ag)	41(Ag)	0.09760847	41(Ag) 103(Ag)	0.07288089			
24(Ag)	26(Ag)	0.13726455	44(Ag) 53(Ag)	0.21127898			
24(Ag)	32(Ag)	0.09854265	44(Ag) 55(Ag)	0.10954847			
24(Ag)	50(Ag)	0.06530382	46(Ag) 55(Ag)	0.21121121			
24(Ag)	54(Ag)	0.07338386	46(Ag) 56(Ag)	0.21134067			
25(Ag)	32(Ag)	0.10656642	50(Ag) 54(Ag)	0.07277818			
25(Ag)	44(Ag)	0.21144857	50(Ag) 98(Ag)	0.13712268			
25(Ag)	46(Ag)	0.10804474	53(Ag) 54(Ag)	0.10676271			
25(Ag)	53(Ag)	0.21223084	53(Ag) 56(Ag)	0.10753767			
26(Ag)	59(Ag)	0.13688695	54(Ag) 56(Ag)	0.10427913			
26(Ag)	98(Ag)	0.09467248	54(Ag) 59(Ag)	0.09818302			
32(Ag)	40(Ag)	0.07252156	54(Ag) 103(Ag)	0.09704607			
32(Ag)	46(Ag)	0.10420065	55(Ag) 56(Ag)	0.21143888			
32(Ag)	50(Ag)	0.09739495	59(Ag) 103(Ag)	0.06533683			
40(Ag)	41(Ag)	0.09715228	98(Ag) 103(Ag)	0.13720223			
40(Ag)	98(Ag)	0.13726666					

Table S5. Calculated Cu-Cu bond orders in Cu_{17} and Ag-Ag bond orders in Ag_{17} .

References

[S1] C. Viñas, R. Benakki, F. Teixidor and J. Casabó, J. Inorg. Chem., 1995, 34, 3844–3845.

[S2] M. J. Frisch, et al. Gaussian, Inc., Wallingford CT, 2009.

[S3] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

[S4] C. Lee, W. Yang and R. G. Parr, *Phys. Rev. B* 1988, **37**, 785–789.

[S5] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200–1211.

[S6] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, J. Phys. Chem., 1994, 98, 11623–11627.

[S7] T. Lu and F. W. Chen, J. Comput. Chem., 2012, **33**, 580-592.

[S8] M. Pang, J. Hu and H. C. Zeng, J. Am. Chem. Soc., 2010, **132**, 10771-10785.