
Supporting Information

Oxygen Defect-induced Localized Surface Plasmon Resonance in WO3-x

Quantum Dot/Silver Nanowire Interface: Photocatalysis and SERS

Wei Wei,[‡]^a Yongji Yao,[‡]^a Qi Zhao,^a Zhilong Xu^a, Qinfan Wang^a, Zongtao Zhang^b and Yanfeng Gao^{*a}

^aSchool of Materials Science and Engineering, Shanghai University, Shanghai 200444, People's Republic of China. E-mail: yfgao@shu.edu.cn ^bSchool of Materials Science and Engineering, Zhengzhou University, Zhengzhou, Henan, 450001, People's Republic of China. ‡Contributed equally to this work.

Figure S1. XPS spectra of $WO_{2.72}$ QD@Ag NW and WO_3 QD@Ag NW: (a) survey spectra and (b) high-resolution O 1s spectra.

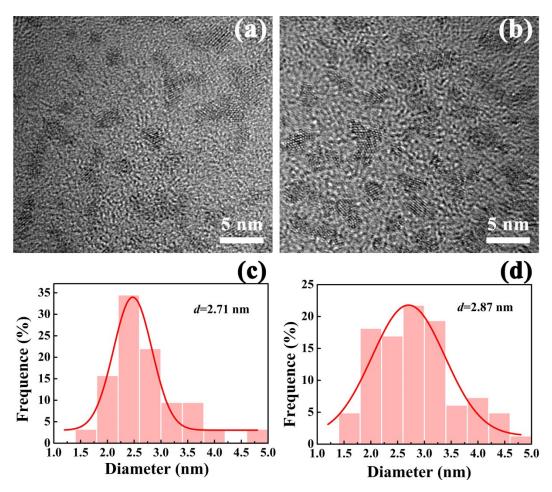
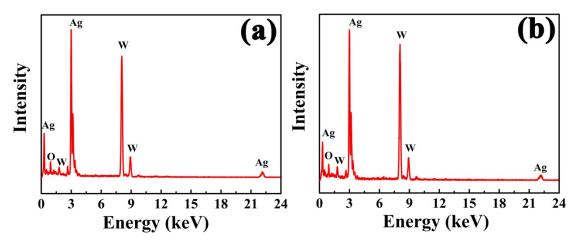
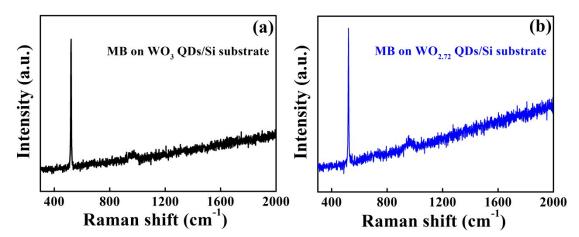




Figure S2. TEM images of (a) WO_3 QDs and (b) $WO_{2.72}$ QDs. Diameter distributions of (c) WO_3 QDs and (d) $WO_{2.72}$ QDs.

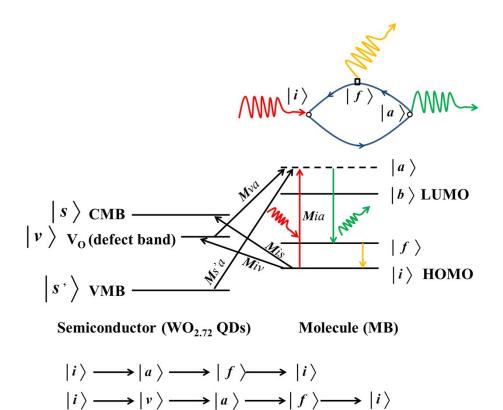

Figure S3. EDS spectra of (a) WO₃ QD@Ag NW hybrids in Figure 2a, and (b) WO_{2.72} QD@Ag NW hybrids in Figure 2b.

Figure S4. Raman spectra of (a) MB on WO₃ QDs/Si substrate and (b) MB on WO_{2.72} QDs/Si substrate. Herein, ten microlitres of Methylene blue (MB) with a fixed concentration $(1 \times 10^{-6} \text{ M})$ was added dropwise onto the surface of the as-prepared WO_{3-x} QD@Ag NW substrate and then measured at an excitation wavelength of 633 nm.

Figure S5. PL spectra of $WO_{2.72}$ QDs and $WO_{2.72}$ QD@Ag NW with an excitation light of 325 nm.

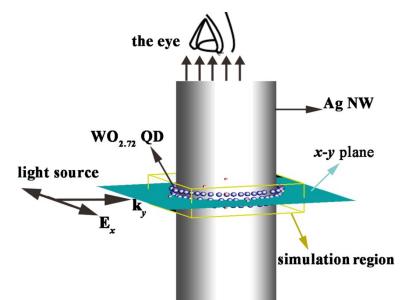
Figure S6. The scheme of a Raman scattering process described by Feynman figure, and the photo-induced charge transfer of semiconductor-to-molecule and molecule-to-semiconductor for a defect-rich semiconductor.

 $|s'\rangle \longrightarrow |a\rangle \longrightarrow |f\rangle \longrightarrow |i\rangle$

A Raman scattering process of MB molecule can be illustrated by the Feynman figure (Figure S5). An ordinary Raman scattering process includes the following aspects as the quantum theory: (1) the photon-electron interaction in ground state (LOMO), electrons gain energy and jump to excited state; (2) the electrons transition from excited state to final state, resulting in the generation of photons (scattering light); (3) the coupling between phonons (or vibrational mode) and electrons, these electrons fall back to the ground state. According to the Fermi's golden rule, the Raman scattering probability (P_s) is proportional to the one-to-many transition probability per unit of time from the initial state $|i\rangle$ to a set of final states $|f\rangle$. The Raman scattering intensity (I_s) as given by the Golden Rule will be:¹

$$I_{s} \propto P_{s} = \frac{2\pi}{h} \left| \frac{\langle i | H_{e-ph} | f \rangle \langle f | H_{e-r}(\omega_{s}) | a \rangle \langle a | H_{e-r}(\omega_{i}) | i \rangle}{\left[\left(h\omega_{i} - (E_{a} - E_{i}) \right) \right] \left[h\omega_{i} - h\omega_{0} - \left(E_{f} - E_{i} \right) \right]} \right|^{2} \delta(h\omega_{i} - h\omega_{s} - h\omega_{0})$$
(S1)

where $|i\rangle$ and $|f\rangle$ represent the initial state and final state of electrons, respectively. $|a\rangle$ represent the excited state. H_{e-r} and H_{e-ph} are the Hamiltonian matrix of radiation light and electron-phonon coupling. E_a and E_i is the energy of excited state $|a\rangle$ and ground state $|i\rangle$. $\hbar\omega_i$, $\hbar\omega_s$ and $\hbar\omega_0$ is the energy of the incident photon, scattered photon and emitted phonon respectively. However, in the defect-rich semiconductor-molecule system, the contribution of photo-induced charge transfer (PICT) to Raman scattering must be taken into consideration.² The rich oxygen vacancies in WO_{2.72} QDs can introduce new electronic states (Figure S9), which benefit to the Raman scattering. Here, we use $|s'\rangle$ to denote electronic state the top of the valence band, and $|v\rangle$ represent the oxygen defect state lying in the forbidden band. These electronic states in lattice or surface provide two new pathways for electron transfer: (1) $|i\rangle \rightarrow |v\rangle \rightarrow |a\rangle \rightarrow |f\rangle \rightarrow |i\rangle$; (2) $|s'\rangle \rightarrow |a\rangle \rightarrow |f\rangle \rightarrow |i\rangle$.³ With a similar approach, we write:


$$I_s \propto P_s = \frac{2\pi}{h} |A+B+C|^2 \,\delta(h\omega_i - h\omega_s - h\omega_0)$$
(S2)

$$\mathbf{A} = \frac{\langle i | H_{e-ph} | f \rangle \langle f | H_{e-r}(\omega_s) | a \rangle \langle a | H_{e-r}(\omega_i) | i \rangle}{\left[\left(\mathbf{h}\omega_i - (E_a - E_i) \right) \right] \left[\mathbf{h}\omega_i - \mathbf{h}\omega_0 - \left(E_f - E_i \right) \right]}$$
(S3)

$$B = \frac{\langle i | H_{e-ph} | f \rangle \langle f | H_{e-r}(h\omega_s) | a \rangle \langle a | H_{e-r}(h\omega_i) | v \rangle \langle v | H_{e-r}(h\omega_i) | i \rangle}{\left[\left(h\omega_i - (E_a - E_i) \right) \right] \left[h\omega_i - h\omega_0 - \left(E_f - E_i \right) \right]}$$
(S4)

$$C = \frac{\langle i | H_{e-ph} | f \rangle \langle f | H_{e-r}(h\omega_s) | a \rangle \langle a | H_{e-r}(h\omega_i) | s' \rangle}{\left[\left(h\omega_i - (E_a - E_{s'}) \right) \right] \left[h\omega_i - h\omega_0 - \left(E_f - E_{s'} \right) \right]}$$
(S5)

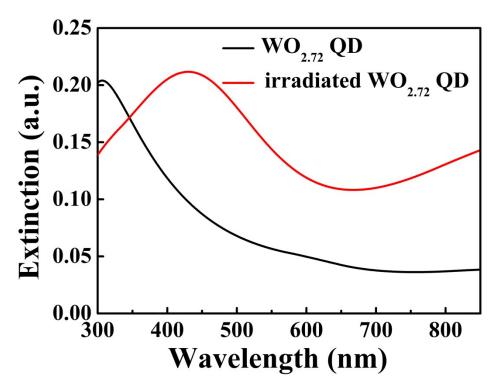

here A represents the contribution of adsorbed molecular resonance, which is independent of the defect states in the semiconductor. B represents the contribution of PICT, which is resulted from defect states in the semiconductor-molecular system, especially in the irradiated $WO_{2.72}$ QDs, more electrons occupied the oxygen defect state helped to increase the transition probability of photon-generated electrons. C represents the contribution of PICT from valance state to an excited state of the molecule.

Figure S7. Schematic diagram of FDTD simulation for $WO_{2.72}$ QD@Ag NW structure. The spatial electric field distribution maps in the *x-y* plane were extracted from this calculations. The diameter of $WO_{2.72}$ QD and Ag NW are 2.8 nm and 50 nm, respectively.

Figure S8. (a) Refractive index *n*, (b) extinction coefficient *k*, (c) real part of permittivity ε_r and (d) imaginary part of permittivity ε_i of WO_{2.72} QDs and irradiated WO_{2.72} QDs.

Figure S9. The simulated extinction spectrum of a WO_{2.72} QD of radius a=1.4 nm in air. This result has same trends as the measured UV-vis absorption spectra of WO_{2.72} QDs dispersion (in ethanol).

In this simulation, we consider a spherical WO_{2.72} QD of radius a=1.4 nm that is irradiated by x-polarized light of wavelength λ (Figure S6). The extinction spectrum of the single WO_{2.72} QD can be calculated as follow:^{4,5}

$$E(\lambda) = \frac{24\pi^2 a^3 \varepsilon_{out}^{3/2}}{\lambda \ln(10)} \left[\frac{\varepsilon_i(\lambda)}{\left(\varepsilon_r(\lambda) + \chi \varepsilon_{out}\right)^2 + \varepsilon_i(\lambda)} \right]$$
(S6)

here, ε_r and ε_i are the real and imaginary components of the dielectric constant (in Figure S7), respectively. ε_{out} is the external dielectric constant (ε_{out} =1 for air), λ is the wavelength of the incident *x*-polarized light. The value of factor χ is 2 for the case of a sphere.

References

- P. Y. Yu and M. Cardona, Fundamentals of Semiconductors: Physics and Materials Properties, Springer, Heidelberg, 2005.
- S. Cong, Y. Yuan, Z. Chen, J. Hou, M. Yang, Y. Su, Y. Zhang, L. Li, Q. Li, F. Geng, Z. Zhao, *Nat. Commun.*, 2015, 6, 7800.
- 3. J. R. Lombardi, R. L. Birke, J. Phys. Chem. C, 2014, 118, 11120-11130.
- 4. K. A. Willets, R. P. Van Duyne, Annu. Rev. Phys. Chem., 2007, 58, 267-297.
- 5. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.