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A. DNA sequences: Swapping system

We report here the sequences designed to self-assemble the nano-star and the dimer.

A particle sequences:
5’- GCGTGACTAGGGCGAAGTACCAGCGAGCGTGCAAACGCTCCACGGAGTCCGCAGTCCAGTGTAACC - 3’

5’- CGTGCTCGCACAGTGACATCTGACGACGCTGGTACTTCGCCCTAGTCACGCCAGTCCAGTGTAACC - 3’

5’- CGCTGACCCGTGGGAATCAGTTCGCACGTCAGATGTCACTGTGCGAGCACGCAGTCCAGTGTAACC - 3’

5’- CGGACTCCGTGGAGCGTTTGCACGCAGCGAACTGATTCCCACGGGTCAGCGCAGTCCAGTGTAACC - 3’

B particle sequences:
5’- CGGTCACATGTCCCGGACCTCTGCGGGTTACACTGG - 3’

5’- CGCAGAGGTCCGGGACATGTGACCGACACTGGACTG - 3’.

B. DNA sequences: Non-Swapping (no toehold) system

To demonstrate the different dynamics exhibited by swapping and non-swapping samples we modify the A and B
particle sequences eliminating the toehold. Therefore, we keep unchanged the four arms of A particles and vary only
the P sticky sequence, now composed of 11 instead of 15 non-self complementary basepairs. B particles are composed
by the same linear segment of 25 basepairs terminating on both ends with the E2 ACACTGGACTG sequence.
When P and E2 are bonded, no free single-stranded regions are left to act as toehold. Thus, the presence of free B
links in solution can not start the strand exchange process. The new sequences for the A and B nano-structures are
reported below.

A particle sequences:
5’- GCGTGACTAGGGCGAAGTACCAGCGAGCGTGCAAACGCTCCACGGAGTCCGCAGTCCAGTGT - 3’

5’- CGTGCTCGCACAGTGACATCTGACGACGCTGGTACTTCGCCCTAGTCACGCCAGTCCAGTGT - 3’

5’- CGCTGACCCGTGGGAATCAGTTCGCACGTCAGATGTCACTGTGCGAGCACGCAGTCCAGTGT - 3’

5’- CGGACTCCGTGGAGCGTTTGCACGCAGCGAACTGATTCCCACGGGTCAGCGCAGTCCAGTGT - 3’

B particle sequences:
5’- CGGTCACATGTCCCGGACCTCTGCGACACTGG ACTG- 3’

5’- CGCAGAGGTCCGGGACATGTGACCGACACTGGACTG - 3’.

C. Melting profiles: NUPACK analysis

To confirm the thermodynamic binding behaviour of the selected sequences we use the NUPACK [1] oligo simulator.
Based on the Santalucia thermodynamics model [2], NUPACK allows for a precise calculation of the melting temper-
ature for the A and B particles as well as for the P −E1 and P −E2 complexes. By inserting the proper strands and
salt concentration (fixed at the experimental value of 0.4 M of NaCl for all sequences), the program calculates the
T -dependence of the fraction of unbounded basepairs. Fig. S1 shows the calculated melting profiles. The difference
between the melting T of the particles and the melting T of the sticky sequences confirms that the formation of the
A and B particles takes place at significantly higher T than the binding of the P −E1 and P −E2 sticky sequences.
This difference in T guarantees a net separation between the self-assembly of the nano-structures and the formation
of the network.
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Figure S1: Melting curves calculated by using NUPACK [1]. Note that the self-assembly of the A and B particles precedes on cooling
the binding of the sticky sequences (P with E1 and P with E2). Around 50 ◦C all possible bonds are formed.

D. Binary mixtures of tetravalent and bivalent particles: Stockmayer theory.

The Flory and Stockmayer polymerisation theory focuses on the calculation of the gel point and of the cluster size
distribution of branched structures of functionality f [3]. Neglecting the formation of cycling structures and assuming
equally reactive sites, the theory provides an explicit expression for the percolation point and for the cluster size
distribution. We review here the theory for the case of a binary mixture of tetravalent A (fA = 4) and bivalent B
(fB = 2) particles where only AB bonds are allowed. Defining NA and NB as the number of A and B particles
respectively, the probabilities pA and pB that a randomly chosen A or B reactive site (the sticky sequence in the DNA
particle case) is involved into a bond can be expressed as

pA =
Nbonds

4NA
, pB =

Nbonds

2NB
, (1)

where Nbonds is the overall number of formed bonds. Since A can only bind with B, Nbonds connects pA with pB .
Eliminating Nbonds from one of the two relations one finds

pA = pB
NB

2NA
. (2)

A perfect network in which all sites are bonded is obtained at low T only when NB = 2NA. At such stoichiometric
composition x ≡ NA/(NA +NB), Eq. 2 shows that pA = pB = 1. Varying the composition from the perfect network
value x = 0.3̄, some of the reactive sites of the majority species will not be able to participate in a bond, despite the
low T . In particular, when x < 0.3̄ the maximum number of bonds remain equal to 4NA since all A sites are involved
in a bond (and hence pA = 1) but a finite fraction of B sites remains unbounded (pB < 1). The opposite case takes
place for x > 0.3̄.

The cluster size distribution N(n, l), where n and l stand for the number of A and B particles in a cluster of size
n+ l respectively, derived by Stockmayer [3] has the following expression (with n− 1 ≤ l ≤ 1 + 3n)

N(n, l) = fANA
(1 − pA)(1 − pB)

pB

(fAn− n)!(2l − l)!

(fAn− n− l + 1)!(l − n+ 1)!n!l!
xnfx

l
2 , (3)

where

xfA = pB
(1 − pA)fA−1

(1 − pB)
, x2 = pA

(1 − pB)

(1 − pA)
. (4)

The condition n− 1 ≤ l ≤ 1 + 3n arises from the fact that a cluster with n tetramers must contain at least n− 1 and
at most 1 + 3n links. In the particular case when pA = 1, all A reactive sites must be connected to a B particle and
hence the value of l is fixed to l = 3n+ 1.
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The percolation threshold as derived by Stockmayer [3] fulfills

pApB =
1

fA − 1
. (5)

When pA = 1, the value of pB is fixed by the stoichiometry of the mixture (see Eq. 2) to pb = 2x
1−x .

The percolation threshold for fA = 4 is thus given by

2x

1 − x
=

1

3
, or x =

1

7
.

Fig. S2 shows the fraction of particles in the infinite cluster as a function of x as predicted by Stockmayer [3]. It is
zero for x < 1

7 , approaches one at the stoichiometric value x = 1
3 and then goes to zero again in the opposite limit in

which A particles are the majority component at x = 3
5 .

Figure S2: Fraction of particles in the infinite cluster as a function of the system composition x. The specific x values used in the
experiment are highlighted.

We experimentally select three different compositions, x = 0.33, x = 0.28 and x = 0.25, in which the 100%, the
96% and the 90% respectively of particles belong to the infinite spanning cluster (see crosses in Fig. S2). All the
selected x values are thus well beyond the percolation threshold. To provide a feeling of the three different studied
concentrations we report in Table S1 the compositions x, the corresponding pB , the fraction of unreacted B sites
2(1 − pB) and the fraction of B particles in monomeric form (1 − pB)2.

For completeness, we show in Fig. S3 the Stockmayer’s predictions for the cluster size distribution at low T (pA = 1)
on changing x.

x pB fraction of unreacted B sites fraction of unreacted B particles

0.33 1 0 0

0.28 0.7̄ 0.44 0.05

0.25 0.6̄ 0.67 0.11

Table S1: The table reports the three experimental compositions with the relative probability pB that a B site is involved in a bond at
low T (pA = 1), the fraction of unreacted B sites and the fraction of unreacted B particles.
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Figure S3: Normalized cluster size distribution when pA = 1 (low T ) for different values of x. s is the sum of bi-functional (l) and
tetra-functional (n) particles composing the cluster. Gray lines indicate x values smaller than the percolation threshold (x = 1/7). Light
cyan indicates x values larger than the percolation threshold (x = 1/7). The three curves with larger symbols indicate respectively
percolation (where a power-law is observed) and the distributions for x = 0.25 (green) and x = 0.28 (red).

Theoretical Stokmayer predictions - A particles with generic functionality

The same formulas, previously presented for the case fA = 4, can be also expressed in a general form for particles
with functionality fA, always keeping the B-particle functionality fixed to two. The previous Eq. 1 becomes

pA =
Nbonds

fANA
, pB =

Nbonds

2NB
, (6)

and correspondingly

pAfANA = pB2NB . (7)

The stoichiometric composition xfb (i.e. pA = pB = 1) is now

fAxfb
2(1 − xfb)

= 1 . (8)

giving xfb = 2
5 for fA = 3, xfb = 1

3 for fA = 4 and xfb = 2
7 for fA = 5. The corresponding percolation x values are,

from Eq. 5, x = 0.25 for fA = 3, x = 0.14 for fA = 4 and x = 0.09 for fA = 5 for the x < xfb and x = 0.57 for fA = 3,
x = 0.60 for fA = 4 and x = 0.62 for fA = 5 for the x > xfb. Fig. S4 shows the fraction of particles belonging to the
infinite cluster as a function of x, as predicted by Stockmayer [3], for fA = 3, 4, 5. On increasing fA, the range of x
values, where a gel phase is present, increases.

E. Phase diagram for different particle functionalities

Changing fA has also an effect on the phase diagram of the system. On a general ground, on decreasing fA, the
region of thermodynamic stability in the density-density or density-composition plane increases. On decreasing fA
homogeneous networks can be produced with smaller average densities, resulting in floppier structures. The stability
fields, for binary mixtures of limited-valence particles with functionality fA and two, can be calculated as discussed
in Ref. [4] and are here reproduced in Fig. S5. The same figure reports also the associated (mean-field) percolation
lines. As can be seen, the increase of fA implies a decrease of the percolation threshold, meaning that the system
more easily forms a percolating spanning network. At the same time, working at high fA values results in a widening
of the coexisting region. This widening reflects the increase of the density of the optimal (stoichiometric) network, a
phenomenon typical of limited valence particles [5]. The experimentally investigated value fA = 4 has been selected
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Figure S4: Fraction of particles in the infinite cluster in function of the system composition x for three different values of fA.

as a compromise between thermodynamic stability which decreases on increasing fA and percolation ability which
increases on increasing fA. It should also be noted that the increase of the network density associated to the increase
of fA also brings to variations of the elastic properties of the material, as recently demonstrated for DNA nano-stars
of different valence [6].

Figure S5: Phase diagram of a generic binary mixture of limited-valence particles for three different values of fA in the dimer number
density ρ2 and the f functional particles number density ρfA plane (black fA = 3, red fA = 4 and green fA = 5) in the fully-bonded
limit. Dashed regions indicate phase-coexistence. The coexistence lines have been calculated as in Ref. [4] (Courtesy of E. Locatelli).
The symbol-decorated lines indicate the mean-field percolation thresholds. Between the two symbol-decorated lines there is a space
spanning cluster. The full lines inside the shaded areas indicate the stoichiometric ratios.

F. Bulk Viscosity

DLS microrheology lies within the class of passive microrheology techniques, which consists on tracking the motion
of colloidal tracers with predefined radius σ, but without directly induce any external force on them. In this scenario,
it becomes possible to extract the corresponding bulk viscosity of the medium in which the tracers undergo a pure
Brownian diffusion process.

In particular, we evaluate the time t1/e at which g1(t1/e) = 1/e, with e ≡ 2.7182, which for a pure diffusive process

is equivalent to (Dq2)−1. Fig. S6 shows the autocorrelation functions of polystyrene (PS) colloids of radius σ = 530
nm, coated with polyethylene oxide (PEO), diffusing in the system of composition x = 0.25.

The selected volume fraction of colloids φ = 3.7 · 10−4 is large enough to guarantee that the scattering is essentially
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originating from the colloidal tracer particles, but low enough to preserve conditions of no inter-traces interactions.
The single decay, reported for the autocorrelation functions, confirms the appropriateness of the chosen experimental
conditions. The value of η is calculated via the Stokes-Einstein relation

η =
kBTq

2

6πσ
t1/e , (9)

where kB is the Boltzmann constant.
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Figure S6: Measured autocorrelation functions (circles) for a system with x = 0.25 in the presence of a volume fraction of tracer
colloids φ = 3.7 · 10−4. The diffusive motion of the traces provides a measure of the system bulk viscosity via the Stokes-Einstein relation.

G. Decay of the density fluctuation in a denser swapping (with toehold) system

We characterise here the T -behaviour of a system at x = 0.25, i.e. the same composition as the samples discussed
in the main article, in which we increase the total density by a factor 4/3 (e.g. the A particle concentration is here
fixed to 100 µM, instead of the 75 µM value reported in the main text). The concentration of B particles satisfies
x = 0.25. Fig. S7(a-b) shows g1(t) for different T for the two densities and the corresponding τs (in panel c). Despite
the experimental noise, τs of the denser sample is faster, suggesting that the closer proximity of the defect tip to the
toehold favours the swapping process [7].
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Figure S7: Correlation functions of two different samples at x = 0.25 differing from the A particle concentrations: 75 µM (a) and
100 µM (b). (c) Decay times τs of the two systems.
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