A Chemoinformatic Approach for Characterization of Hybrid Nanomaterials: Safer and Efficient Design Perspective

Alicja Mikolajczyka*, Natalia Sizochenkoa,c, Ewa Mulkiewiczc, Anna Malankowskad, Bakhtiyor

Rasulev^e and Tomasz Puzyn^{a*}

^a Laboratory of Environmental Chemometrics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

^b Department of Environmental Analytics, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

^c Department of Computer Science, Dartmouth College, 6211 Hinman, Hanover, New Hampshire 03755, United States of America

^d Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland

^e Department of Coatings and Polymeric Materials, North Dakota State University, NDSU Dept 2760, P.O. Box 6050, Fargo, ND 58108, United States of America

† Footnotes relating to the title and/or authors should appear here.

*corresponding author e-mail: tomasz.puzyn@ug.edu.pl, mikolajczyk@qsar.eu.org

Sample label	Dataset splitting	Descriptor %mol _{Pd}	Descriptor BET _{area}	$\begin{array}{c} \mathbf{Descriptor} \\ \varphi_{Pt} \end{array}$	$\begin{array}{c} \mathbf{Descriptor} \\ \varphi_{mix} \end{array}$	Observed UVVis _{degr}	Predicted UVVis _{degr}
0.1Ag	Training	0.0	61.0	0.000	0.016	61.8	61.11
0.1Ag_0.1Au	Validation	0.0	106.5	0.000	0.182	63.0	61.11
0.1Ag_0.1Au_0.1Pd	Training	0.1	85.0	0.000	0.567	92.8	85.85
0.1Ag_0.1Pd	Training	0.1	79.0	0.000	0.135	77.4	85.85
0.1Ag_0.1Pt	Training	0.0	92.0	0.034	0.197	85.4	74.45
0.1Ag_0.1Pt_0.1Au	Training	0.0	94.0	0.034	0.705	84.4	74.45
0.1Ag 0.1Pt 0.1Au 0.1Pd	Training	0.1	94.0	0.034	1.556	100.0	99.18
0.1Ag_0.1Pt_0.1Pd	Validation	0.1	89.0	0.034	0.599	100.0	99.18
0.1Ag 0.5Au	Training	0.0	103.0	0.000	5.966	51.4	61.11
0.1Ag_0.5Pd	Training	0.5	115.0	0.000	3.817	99.2	99.65
0.1Ag 0.5Pt	Training	0.0	112.5	4.195	6.601	96.8	96.35
0.1Pt 0.1Au 0.1Pd	Training	0.1	92.0	0.034	0.727	100.0	99.18
0.5Ag	Training	0.0	91.0	0.000	1.949	64.4	61.11
0.5Ag_0.1Au	Training	0.0	112.0	0.000	3.889	52.9	61.11
0.5Ag_0.1Pd	Validation	0.1	77.5	0.000	3.458	72.1	85.85
0.5Ag 0.1Pt	Training	0.0	94.0	0.034	4.016	68.4	74.45
1.5Ag	Training	0.0	89.0	0.000	52.620	70.3	69.20
1.5Ag 0.1Au	Training	0.0	90.2	0.000	67.559	65.6	69.20
1.5Ag 0.1Pd	Training	0.1	98.0	0.000	64.500	96.0	93.94
1.5Ag 0.1Pt	Validation	0.0	145.6	0.034	68.462	85.6	96.35
2.5Ag	Training	0.0	91.0	0.000	243.612	73.5	69.20
2.5Ag 0.1Au	Validation	0.0	79.0	0.000	284.184	60.0	69.20
2.5Ag 0.1Pd	Training	0.1	98.0	0.000	275.784	94.9	93.94
2.5Ag 0.1Pt	Training	0.0	86.0	0.034	286.664	71.1	82.54
2.5Ag 0.5Au	Training	0.0	90.4	0.000	486.081	64.6	69.20
2.5Ag 0.5Pd	Training	0.5	107	0.000	432.209	99.5	93.94
2.5Ag 0.5Pt	Validation	0.0	119	4.195	501.992	96.1	96.35
4.5Ag	Training	0.0	67.5	0.000	1420.743	73.5	69.20
4.5Ag_0.5Au	Training	0.0	111.4	0.000	2129.422	69.5	69.20

Table S1. Descriptors selected for the nano- $QSPR_{mix}$ model of photocatalysis, their values and the endpoint predictions

Table S2. DT classifications for photocatalysis

Decision Stump 2 (sedimentation potential of Pt nanoparticles) $\varphi_{Pt} \le 0.0168$: -4.06 $\varphi_{Pt} > 0.0168$: 9.28 φ_{Pt} is missing, then set value to 7.723*10⁻¹⁶

Decision Stump 3 (additive sedimentation potential for mixture) $\varphi_{mix} \le 6.28: -3.87$ $\varphi_{mix} > 6.28: 4.22$ φ_{mix} is missing, then set value to 1.54: *10⁻¹⁶

Decision Stump 4 (BET surface area)

$$\begin{split} BET_{area} &\leq 112.25:-1.20\\ BET_{area} &> 112.25:12.61\\ BET_{area} & \text{is missing, then set value to }-7.723*10^{-17} \end{split}$$

Table S3. DT classifications for cytotoxicity

 $\begin{array}{l} Decision \ Stump \ 1 \ (electron \ affinity) \\ A \leq 198.67: \ -0.423 \\ A > 198.67: \ 0.634 \end{array}$

Decision Stump 2 (electron affinity) $A \le 39.81$: -0.327 A > 39.81: 0.058

Decision Stump 3 (electron affinity) $A \le 490.92$: -0.038 A > 490.92: 0.343

 $\begin{array}{l} Decision \ Stump \ 4 \ (electron \ affinity) \\ A \leq 198.67: \ 0.077 \\ A > 198.67: \ -0.115 \end{array}$

Table S4.	Descriptors	selected f	or the	nano-Q	SAR _{mix}	model	of cyte	otoxicity,	their	values	and	the
endpoint p	oredictions											

Sample	Data	Descriptor	Descriptor	Observed	Predicted <i>pEC</i> ₅₀	Predicted <i>pEC</i> ₅₀
Label	Splitting	χ_{mix}	A	pEC_{50}	by MLR-GA	by DT model
					model	
0.1Ag_0.1Pd	Training	0.41	17.93	5.56	5.9	5.66
0.1Ag	Training	0.19	12.56	5.60	5.8	5.66
0.1Ag_0.1Au	Validation	0.45	34.84	5.67	5.9	5.66
0.1Ag_0.5Pd	Training	1.29	39.41	5.70	6.1	5.66
0.5Ag	Training	0.97	62.80	5.83	6.0	6.05
0.1Ag_0.1Pt_0.1Pd	Validation	0.64	38.46	5.86	5.9	5.66
0.1Ag_0.1Pt_0.1Au	Training	0.68	55.37	5.88	5.9	6.05
0.1Ag_0.1Au_0.1Pd	Training	0.67	40.21	5.88	5.9	6.05
0.1Ag_0.1Pt	Validation	0.42	33.09	5.92	5.9	5.66
0.1Pt_0.1Au_0.1Pd	Training	0.70	48.18	5.92	5.9	6.05
0.1Ag_0.5Pt	Training	1.33	115.21	5.97	6.1	6.05
0.1Ag_0.1Pt_0.1Au_0.1Pd	Validation	0.90	60.74	6.02	6.0	6.05
0.1Ag_0.5Au	Training	1.46	123.96	6.05	6.1	6.05
1.5Ag	Training	2.90	188.40	6.23	6.4	6.05
0.5Ag_0.1Au	Validation	1.22	85.08	6.25	6.0	6.05
0.5Ag_0.1Pt	Training	1.19	83.33	6.29	6.0	6.05
0.5Ag_0.1Pd	Training	1.19	68.17	6.46	6.0	6.05
1.5Ag_0.1Au	Validation	3.15	210.68	6.58	6.4	6.91
1.5Ag_0.1Pt	Training	3.12	208.93	6.63	6.4	6.91
2.5Ag	Training	4.83	314.00	6.76	6.8	6.91
1.5Ag_0.1Pd	Validation	3.12	193.77	6.77	6.4	6.05
2.5Ag_0.1Au	Training	5.08	336.28	6.80	6.8	6.91
2.5Ag_0.5Pd	Training	5.93	340.85	6.88	7.0	6.91
2.5Ag_0.5Au	Validation	6.10	425.4	7.01	70	6.91
2.5Ag_0.1Pt	Training	5.05	334.53	7.07	6.8	6.91
2.5Ag_0.5Pt	Training	5.97	416.65	7.10	7.0	6.91
2.5Ag_0.1Pd	Validation	5.05	319.37	7.20	6.8	6.91
4.5Ag	Training	8.69	565.20	7.40	7.5	7.29
4.5Ag_0.5Au	Training	9.96	676.60	7.41	7.7	7.29

Numbe	er Descriptor	Formula	Description
(1)	ionization potential (IP)	$IP = E_C^{N-1} - E_0^N$	E_C^{N-1} – the energy after losing one electron
			(cation);
(2)	electron affinity (A)	$A = E_0^N - E_A^{N+I}$	E_0^N – the basal state energy (neutral);
(3)	absolute electronegativity (μ)	(I + A)	E_A^{N+I} – the energy after gaining one
		$\mu =2$	electron (anion);
(4)	adsorption energy of metal ($\Delta E_{ads} = E_{tot} - (E_{TiO_2} + E_M)$	E_{tot} – the total energy of the interacting
	ΔE_{ads}		metal – TiO ₂ surface;
			E_{TiO2} is the total energy of the clean most
			stable TiO ₂ ;
			$E_{\rm Me}$ – the total energy of the single metal
			atom

Table S5. Description of basic quantum chemical descriptors

Sample label	%mol _{Ag}	%mol _{Pt}	‰mol _{Au}	%mol _{Pd}	BET _{area}	A	χ_{mix}	IP	IP_1	φ_{Pt}	$arphi_{mix}$
	[% mol]	[% mol]	[% mol]	[% mol]	$[m^2/g]$	[kJ/mol]	[kJ/mol]	[kJ/mol]	[kJ/mol]	-	-
0.1Ag_0.5Au	0.1	0	0.5	0	103.00	123.96	1.46	518.15	1197.00	0	5.966
0.5Ag_0.1Au	0.5	0	0.1	0	112.00	85.08	1.22	454.51	1233.00	0	3.889
2.5Ag_0.1Au	2.5	0	0.1	0	79.00	336.28	5.08	1916.51	5373.00	0	284.184
0.1Ag	0.1	0	0	0	61.00	12.56	0.19	73.10	207.00	0	0.016
0.1Ag_0.1Au	0.1	0	0.1	0	106.50	34.84	0.45	162.11	405.00	0	0.182
0.5Ag	0.5	0	0	0	91.00	62.80	0.97	365.50	1035.00	0	1.949
2.5Ag 0.5Au	2.5	0	0.5	0	90.40	425.40	6.10	2272.55	6165.00	0	486.081
1.5Ag_0.1Au	1.5	0	0.1	0	90.20	210.68	3.15	1185.51	3303.00	0	67.559
0.5Ag_0.1Pt	0.5	0.1	0	0	94.00	83.33	1.19	452.50	1214.10	0.034	4.016
4.5Ag_0.5Au	4.5	0	0.5	0	111.40	676.60	9.96	3734.55	10305.00	0	2129.422
1.5Ag	1.5	0	0	0	89.00	188.40	2.90	1096.50	3105.00	0	52.62
2.5Ag_0.1Pt	2.5	0.1	0	0	86.00	334.53	5.05	1914.50	5354.10	0.034	286.664
0.5Ag 0.1Pd	0.5	0	0	0.1	77.50	68.17	1.19	445.94	1222.00	0	3.458
2.5Ag	2.5	0	0	0	91.00	314.00	4.83	1827.50	5175.00	0	243.612
4.5Ag	4.5	0	0	0	67.50	565.20	8.69	3289.50	9315.00	0	1420.743
0.1Ag 0.1Pd	0.1	0	0	0.1	79.00	17.93	0.41	153.54	394.00	0	0.135
0.1Ag 0.1Pt 0.1Au	0.1	0.1	0.1	0	94.00	55.37	0.68	249.11	584.10	0.034	0.705
0.1Ag_0.1Pt	0.1	0.1	0	0	92.00	33.09	0.42	160.10	386.10	0.034	0.197
1.5Ag_0.1Pt	1.5	0.1	0	0	145.60	208.93	3.12	1183.50	3284.10	0.034	68.462
0.1Ag 0.1Au 0.1Pd	0.1	0	0.1	0.1	85.00	40.21	0.67	242.55	592.00	0	0.567
2.5Ag_0.1Pd	2.5	0	0	0.1	98.00	319.37	5.05	1907.94	5362.00	0	275.784
1.5Ag_0.1Pd	1.5	0	0	0.1	98.00	193.77	3.12	1176.94	3292.00	0	64.5
2.5Ag 0.5Pt	2.5	0.5	0	0	119.00	416.65	5.97	2262.50	6070.50	4.195	501.992
0.1Ag_0.5Pt	0.1	0.5	0	0	112.50	115.21	1.33	508.10	1102.50	4.195	6.601
0.1Ag 0.5Pd	0.1	0	0	0.5	115.00	39.41	1.29	475.30	1142.00	0	3.817
2.5Ag 0.5Pd	2.5	0	0	0.5	107.00	340.85	5.93	2229.70	6110.00	0	432.209
0.1Ag 0.1Pt 0.1Pd	0.1	0.1	0	0.1	89.00	38.46	0.64	240.54	573.10	0.034	0.599
0.1Pt 0.1Au 0.1Pd	0	0.1	0.1	0.1	92.00	48.18	0.70	256.45	564.10	0.034	0.727
0.1Ag_0.1Pt_0.1Au_0.1Pd	0.1	0.1	0.1	0.1	94.00	60.74	0.90	329.55	771.10	0.034	1.556

Table S6. List of nano-descriptors for obtained TiO_2 -based hybrid nanomaterials derived from: (i) additive scheme and QM calculations; (ii) experimental measurement and (iii) Smoluchowski equation.

No	Name Suitable to Coefficient		Coefficient	Description of Coefficient
1	The correlation coefficient The root mean square error of calibration	Measure of goodness-of-fit	$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{pred})^{2}}{\sum_{i=1}^{n} (y_{i}^{obs} - \tilde{y}^{obs})^{2}} \qquad RMSEC = \sqrt{\frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{pred})^{2}}{n}}$	where: y_j^{obs} – experimental (observed) value of the property for the i th compound from the training set; y_i^{pred} – predicted value for i th compound from the training set; y^{obs} – the mean experimental value of the property in the training set; n – the number of compounds in the training set.
	The cross-validated coefficient The root mean square error of calibration	Measure stability of the model	$Q_{LOO}^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{predcv})^{2}}{\sum_{i=1}^{n} (y_{i}^{obs} - \tilde{y}^{obs})^{2}} \qquad RMSECV = \sqrt{\frac{\sum_{i=1}^{n} (y_{i}^{obs} - y_{i}^{predcv})^{2}}{n}}$	where: y_j^{obs} – experimental (observed) value of the property for the i th compound; y_i^{predcv} – cross-validated predicted valuef or i th compound; y – the mean experimental value of the property in the training set; n – the number of compounds in the training set.
3				
	The external-validation coefficient The root mean square error of prediction	Measure external predictivity	$Q_{EXT}^{2} = 1 - \frac{\sum_{j=1}^{k} \left(y_{j}^{obs} - y_{j}^{pred} \right)^{2}}{\sum_{j=1}^{k} \left(y_{j}^{obs} - \hat{y}^{obs} \right)^{2}} \qquad RMSEP = \sqrt{\frac{\sum_{j=1}^{k} \left(y_{j}^{obs} - y_{j}^{pred} \right)^{2}}{k}}$	where: y_j^{obs} – experimental (observed) value of the property for the j th compound from the validation set; y_j^{pred} – predicted valuef or j th compound from the validation set; \hat{y}^{obs} – the mean experimental value of the property in the
		The accuracy and different variants of r_m^2	$2\sum_{j=1}^{k_{EXT}} \left(y_{2j}^{obs} - \hat{y}_{2j}^{obs} \right) y_{j}^{pred} \frac{\hat{y}_{pred}}{r_{2j}^{2} - y_{2j}^{2}} \left(1 \right) y_{j}^{pred} \frac{\hat{y}_{pred}}{r_{2j}^{2} - y_{2j}^{2}} \right)$	validation set; k – the number of compounds in the validation set. Squared correlation coefficient values between the observed and
4	Concordance Correlation Coefficient	Restrictive parameter for expressing external predictivity	$\mathcal{LLC} = \frac{\sum_{j=1}^{k_{EXT}} \left(\hat{\mathcal{Y}}_{j}^{obs} - \hat{\mathcal{Y}}^{obs} \right)^{2} + \sum_{j=1}^{k_{EXT}} \left(\hat{\mathcal{Y}}_{j}^{pred} - \hat{\mathcal{Y}}^{pred} \right)^{2} + k_{EXT} \left(\hat{\mathcal{Y}}^{obs} - \hat{\mathcal{Y}}^{pred} \right)^{2}$	predicted values of the compounds with/without intercept $(r^{2/} r_0^2)$.
		Mean absolute error	$MEA = \frac{1}{k} \sum y_{j}^{obs} - y_{j}^{pred}$	

Table S7. Statistic parameters towards development of Nano-QSPR/Nano-QSAR model.*

*Please note that are details according to statistics calculations are described in presented study:

A. Golbraikh, A. Tropsha, Journal of Molecular Graphics and Modelling, 2002, 20, 269-276. (Please see, MS, References section, position 42)

P. Gramatica, *QSAR & Combinatorial Science*, 2007, **26**, 694-701 (Please see, MS, References section, position 60)

K. Roy, S. Kar and P. Ambure, Chemometrics and Intelligent Laboratory Systems, 2015, 145, 22-29. (Please see, MS, References section, position 61)

K. Roy, N. R. Das, P. Ambure and N. B. Aher, Chemometrics and Intelligent Laboratory Systems, 2016, 152, 18-33 (Please see, MS, References section, position 62)

Figure S1. The results of the Y-scrambling test for Nano-QSAR $_{mix}$ model described in eq.4

Average $R^2 Y_{scr}$ = average ' $R^{2'}$ of random models. Average $Q^2 Y_{scr}$ = average ' $Q^{2'}$ of random models

Table S8. The statistics of the Y-scrambling test for Nano-QSAR _{mix} model described in e	q.4	4
--	-----	---

Obtained random Models Parameters for eq. 6:	Value of selected parameters
Average $R^2 Y_{scr}$:	0.05
Average $Q^2 Y_{scr}$:	-0.18
The y-rand R^2 range	-0.46 - 0.45

Figure S2. Williams plot describing applicability domains of MLR-GA model presented in eq. 4.

	Set B																			
	B_0.1	B_0.1	B_0.1	B_0.1	B_0.1	B_0.1	B_0.5	B_0.5	B_0.5	B_1.5	B_1.5	B_4.5	B_1.5	B_2.5	B_2.5	B_2.5	B_2.5	B_2.5	B_2.5	max
	Ag_0.5	Ag_0.	Ag_0.	Ag_0.1	Ag_0.5	Ag_0.1	Ag_0.1	Ag_0.	Ag_0.1	Ag_0.1	Ag_0.	Ag_0.5	Ag_0.1	Ag_0.1	Ag_0.5	Ag_0.5	Ag_0.	Ag_0.	Ag_0.1	[Sa
	Pa	IPt	SPt	Au	Au	Pa	Au	IPt	Pa	Au	IPt	Au	Pa	Au	Pa	Au	IPt	5Pt	Pa	D
Set A																				
A_0.1Ag_0.1																				
Pt_0.1Au_0.1																				
Pd	0.94	0.98	0.94	0.98	0.93	0.98	0.95	0.94	0.94	0.82	0.82	0.44	0.82	0.70	0.69	0.69	0.70	0.69	0.70	0.98
A 0.1Ag 0.1																				
Pt 0.1Pd	0.94	0.99	0.94	0.97	0.92	0.99	0.94	0.95	0.95	0.82	0.82	0.44	0.82	0.70	0.69	0.69	0.70	0.69	0.70	0.99
A 0.1Ag 0.1																				
Au_0.1Pd	0.94	0.97	0.92	0.99	0.93	0.98	0.95	0.94	0.95	0.82	0.82	0.44	0.82	0.70	0.69	0.69	0.70	0.69	0.70	0.99
A 0.1Ag 0.1																				
Pt 0.1Au	0.93	0.98	0.94	0.99	0.93	0.97	0.95	0.95	0.94	0.82	0.82	0.44	0.82	0.70	0.69	0.69	0.70	0.69	0.70	0.99
A 0.1Pt 0.1																				
Au_0.1Pd	0.94	0.98	0.94	0.98	0.93	0.98	0.94	0.94	0.94	0.82	0.82	0.45	0.82	0.70	0.69	0.69	0.70	0.69	0.70	0.98
Max [Sha]																				
Time [504]	0.04	0.00	0.04	0.00	0.03	0.00	0.05	0.05	0.05	0.82	0.82	0.45	0.82	0.70	0.60	0.60	0.70	0.60	0.70	
	0.94	0.99	0.94	0.99	0.95	0.99	0.95	0.95	0.95	0.82	0.82	0.45	0.82	0.70	0.69	0.09	0.70	0.09	0.70	

Table S9. Similarity matrix between the elements of sets A and B of the first case study; in the last column and row, the Hausdorff-like similarity contributions of all the individual elements are reported. (Normalized distance matrix based on Euclidean distance)*

Mauri, A.; Ballabio, D.; Todeschini, R.; Consonni, V. Journal of Chemoinformatics, 2016, 8, 49.

SUM[s _{ba}]	15.69
$SUM[s_{ab}]$	4.91

