Supplementary Information

Cauliflower-like CeO₂-TiO₂ Hybrid Nanoclusters with Extreme Photocatalytic

and Self-Cleaning Properties

Salih Veziroglu,^a Katharina Röder,^a Ole Gronenberg,^b Alexander Vahl,^a Oleksandr Polonskyi,^a Thomas Strunskus,^a Horst-Günter Rubahn,^c Lorenz Kienle,^b Jost Adam,^c Jacek Fiutowski,^c Franz Faupel,^{*a} and Oral Cenk Aktas^{*a}

^a Chair for Multicomponent Materials, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany

^b Synthesis and Real Structures Group, Institute for Materials Science, Faculty of Engineering, Christian-Albrechts-University of Kiel, Kaiserstr. 2, 24143 Kiel, Germany

^c Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alsion 2, 6400 Sønderborg, Denmark

Fig S1. HIM images of heat-treated CeO_2 -TiO₂ at different angles (a) 30⁰ and (b) 0⁰.

Fig S2. Selected-area electron diffraction (SAED) of as-deposited TiO₂.

Fig S3. The high-resolution transmission electron microscopy (HRTEM) image of heat-treated

 CeO_2 -TiO₂.

Fig S4. Fast Fourier transform (FTT) analysis of heat-treated TiO₂ structure.

Fig. S5. High-resolution transmission electron microscopy (HRTEM) image of the bi-layer (crosssection) prepared by focused ion beam (FIB). (The colored image on the left side is an energy filtered TEM-micrograph where yellow and turquoise represent cerium (Ce) and titanium (Ti) elements, respectively).

Fig. S6. Selected-area electron diffraction (SAED) of the cross-section of heat-treated CeO₂-TiO₂.

The reflections clearly demonstrated the presence of both anatase and cubic CeO_2 phases. The anatase seems to be not epitaxially grown on Si-substrate. Additionally, we observed a third phase with d-spacings of 2.05 Å and 2.40 Å which might be attributed to either cubic TiO or a mixed oxide composed of one-third CeO_2 and two-third TiO₂.

Fig. S7. The high-resolution transmission electron microscopy (HRTEM) image of the cross-section of heat-treated CeO₂-TiO₂.

In HRTEM analysis we observed a different phase, which was neither a CeO_2 nor a TiO_2 phase, at CeO_2 -TiO₂ interface, too. Only in few cases we could observe a clear interface between CeO_2 and this

third phase (area marked by red color shown in Fig. S7). Here 5-nm-thick CeO_2 crystals were essentially randomly arranged as it can be seen in Fig. S5 and S7.

On the other hand, this third phase was neither observed in top-view HRTEM nor SAED. This might be due to a special texture of this third phase; or mostly probably FIB-preparation might have induced a structural artifact.

Fig. S8. Detailed deconvolution of a high-resolution XPS O-1s for: **(a)** TiO₂ and **(b)** CeO₂-TiO₂ hybrid structure.

Table S1. Kinetics rate constants (k) for photocatalytic degradation of MB by prepared thin film photocatalysts. (Kinetics rate constants (k) were calculated according to $ln(C/C_0)=k.t$)

Photocatalysts	Rate Constant (s ⁻¹)
as-deposited TiO ₂	-0.14 x 10 ⁻³
heat-treated TiO ₂	-0.15 x 10 ⁻³
as-deposited $CeO_2 - TiO_2$	-0.69 x 10 ⁻³
heat-treated CeO_2 - TiO ₂	-3.40 x 10 ⁻³

Fig S9. The plot of $\ln(C/C_0)$ versus reaction time for photocatalytic degradation of methylene blue (MB) at different CeO₂ thicknesses.